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ABSTRACT

SOLVING COMPUTATIONALLY EXPENSIVE PROBLEMS USING
SURROGATE-ASSISTED OPTIMIZATION: METHODS AND APPLICATIONS

By

Julian Blank

Optimization is omnipresent in many research areas and has become a critical component across

industries. However, while researchers often focus on a theoretical analysis or convergence proof

of an optimization algorithm, practitioners face various other challenges in real-world applications.

This thesis focuses on one of the biggest challenges when applying optimization in practice:

computational expense, often caused by the necessity of calling a third-party software package.

To address the time-consuming evaluation, we propose a generalizable probabilistic surrogate-

assisted framework that dynamically incorporates predictions of approximation models. Besides the

framework’s capability of handling multiple objectives and constraints simultaneously, the novelty

is its applicability to all kinds of metaheuristics. Moreover, often multiple disciplines are involved in

optimization, resulting in different types of software packages utilized for performance assessment.

Therefore, the resulting optimization problem typically consists of multiple independently evaluable

objectives and constraints with varying computational expenses. Besides providing a taxonomy

describing different ways of independent evaluation calls, this thesis also proposes a methodology

to handle inexpensive constraints with expensive objective functions and a more generic concept

for any type of heterogeneously expensive optimization problem. Furthermore, two case studies

of real-world optimization problems from the automobile industry are discussed, a blueprint for

solving optimization problems in practice is provided, and a widely-used optimization framework

focusing on multi-objective optimization (founded and maintained by the author of this thesis) is

presented. Altogether, this thesis shall pave the way to solve (computationally expensive) real-world

optimization more efficiently and bridge the gap between theory and practice.



ABSTRACT

SOLVING COMPUTATIONALLY EXPENSIVE PROBLEMS USING
SURROGATE-ASSISTED OPTIMIZATION: METHODS AND APPLICATIONS

By

Julian Blank

Significant effort has been made to solve computationally expensive optimization problems in

the last two decades. To address the expense of objectives and constraint functions, the usage

of surrogate models during optimization has emerged as a predominant approach. Numerous

surrogate-based algorithms have been proposed, each answering what to model, what to model it

with, and how to utilize the additional information in different ways. However, many optimization

methods are tailored to a specific problem or make impractical assumptions, such as having only a

single objective, not having any constraints to satisfy, or all objectives and constraints being equally

time-consuming. Such assumptions make it challenging for practitioners to find suitable optimiza-

tion algorithms to apply to their applications and show the need for more generalized methods as

well as best practices for solving computationally expensive applications. Thus, this dissertation

addresses computationally expensive optimization problems in a holistic manner, including their

interdisciplinary character and practicalities. It discusses different viewpoints on computationally

expensive optimization and demonstrates relevance by providing an overview of applications in

various research fields. Moreover, it proposes a generalizable surrogate-assisted framework for

solving computationally expensive problems. The framework endows an existing optimization

algorithm fulfilling minimal requirements with surrogate assistance, improving the convergence

behavior. The algorithm’s search pattern on the computationally inexpensive surrogate is used

to determine the subsequent designs to run for the time-consuming simulation. Moreover, this

thesis investigates an often overlooked fact that objectives and constraints may be independently

computable in practice. Independent target functions result in a heterogeneously expensive opti-

mization problem with some objectives or constraints being less and some more time-consuming

than others. A typical scenario of heterogeneity is objectives requiring a time-consuming simula-



tion but computationally inexpensive geometrical or physical constraints. For such cases, this thesis

proposes an optimization method exploiting the inexpensiveness of constraints during optimization.

Furthermore, the approach is generalized for any type of heterogeneity, requiring addressing partial

information on a solution level. Because only little attention has been paid to such a fundamentally

important aspect of expensive optimization, the proposed method needs a novel way of treating

missing information during optimization. The evaluation order of targets is determined based on

an information gain sorting taking the trade-off between prediction error and evaluation time into

account. The proposed method then iterates over targets with more information gain first and

discards solutions early on during the evaluation process without evaluating them entirely. Be-

sides algorithmic aspects of optimizing time-consuming functions, this dissertation also addresses

more practical matters. It presents the architecture and usage of the multi-objective optimization

framework pymoo (founded and maintained by the author of this thesis), a widely used and well-

known toolkit across academia and industry. While some end-users directly employ the provided

state-of-the-art algorithms, others utilize rapid prototyping capabilities or other features such as

multi-criteria decision-making and visualization. Moreover, this thesis portrays optimization as a

product of a collaboration between two or more disciplines. The interdisciplinary characteristics

shall be a substantial part of the problem-solving procedure. Thus the proposal of a blueprint for

collaborative optimization provides some guidance and best practices for practitioners. Altogether,

the optimization of time-consuming functions is looked at from different angles. Practitioners who

face time-consuming real-world problems can use the proposed methods for solving various types

of optimization problems. Thus, this thesis shall pave the way to solve (computationally expensive)

real-world optimization more efficiently and bridge the gap between theory and practice.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Optimization is omnipresent and has become an inherent part of our lives. The products we use

and the services we consume result from a development process where all kinds of decisions

regarding design and functionality had to be made. Such decisions are usually based on criteria to

be met and measures to be minimized or maximized. For instance, the development of a washing

machine requires implementing a controller that decides the amount of soap and water to add

given the extent of dirt and grease with the ultimate goal of cleaning the laundry as effectively and

efficiently as possible; smartphones are designed to maximize the user’s experience considering

functionality, usability, and aesthetics; or music streaming services aim to maximize the availability

of songs and streaming quality while minimizing the consumer’s bandwidth usage. For all these

products and services, optimization plays a vital role during development and allows companies

to keep a competitor’s advantage through steady improvements. Being aware of the importance

of optimization, one might want to know what optimization is and how it is defined. Indeed, this

is an open question with different answers to it. On the one hand, mathematicians might state

that the optimization’s goal is finding inputs that satisfy the mathematical definition of optimality

given a function to be either minimized or maximized. On the other hand, practitioners might view

optimization generally as a tool to provide insights and support for decision-making when facing an

application problem. A well-known scientist, George Dantzig, who made significant contributions

to industrial engineering, once said:

True optimization is the revolutionary contribution of modern research to decision

processes.

— George Dantzig
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The usage of the term true optimization implies that optimization seems to be more than

its mathematical definition and emphasizes that optimization as a process shall have a purpose

connected to an overall goal: contributing to modern research. Such an emphasis on applicability

shows the importance of the fusion of theory and practice. When facing a real-world optimization

problem, identifying characteristics and possible challenges is always a good starting point.

1.1.1 Problem Characteristics and Challenges

Facing a real-world optimization problem often starts by investigating the problem’s characteristics.

For most applications, such an analysis will be manifold, because each trait must either implicitly

or explicitly be considered by the optimization method. In the following, important characteristics

of optimization problems are be briefly discussed.

Variable Types. The search space of an optimization problem is based on variables and their types.

For instance, common variable types are continuous, discrete, binary, or permutation. Where

some problems have variables of the same type, others might be of a mixed nature. For example,

mixed-integer programming refers to a problem type with continuous and discrete variables to be

optimized at the same time [3], or a real-world tour planning problem, the traveling thief problem,

consists of a permutation and binary variables [4]. Moreover, it is worth noting that the type of

variables also indirectly impact the search space size. While the search space spanned by real-

valued variables is infinite and uncountable, for a discrete search space, the cardinality is known

however, in practice, intractable to iterative over.

Number of Variables. Not only the type but also the number of variables is critical. Different

algorithms are proposed explicitly for single-variable, small-scale, or large-scale optimization

problems. For example, a relatively simple optimization method such as the golden section method

is known to be effective for optimizing a single variable [5]. However, the golden section search

does not apply to problems with more than one variable. On the other extreme, algorithms have

been customized to work efficiently on a larger scale. For instance, a genetic algorithm has been

2



customized to solve one billion binary variable problem [6], and stochastic gradient descend based

methods with backpropagation [7] are used to optimize a couple of thousands or millions of

variables in (deep) neural networks [8].

Number of Objectives. In the early stage of optimization, researchers have focused on optimization

problems with a single objective. However, many optimization problems consist of multiple

conflicting objectives and thus are multi-objective in nature [9]. Consequently, researchers have

started to propose algorithms to simultaneously optimize multiple objectives with the goal of

obtaining a so-called Pareto-optimal set of solutions. Because not a single solution but a whole

set of solutions shall be found, population-based algorithms are predominantly used [10, 11]. It

is worth mentioning that a multi-dimensional objective space has its own challenges, such as

normalization [12], visualization [13], and decision making [14].

Constraints. Criteria that a solution needs to satisfy are referred to as constraints [15]. From

a user’s perspective, constraints have priority over objective values. No matter how good the

solution’s objectives are, a solution is considered infeasible if it violates one or more constraints [16].

Researchers distinguish between equality and inequality constraints when defining an optimization

problem. Equality constraints are rather strict and may or may not be supported depending on

the type of algorithm. Inequality constraints can have less or more impact depending on their

definition. In some (rare) cases, the optimum with and without constraints might remain the same;

in other cases, the optimum is shifted to the boundary of one or multiple constraints. Generally,

constraints can have a non-neglectable impact on the optimization problem’s complexity.

Differentiability. The availability of derivatives can be beneficial and they can be directly used by an

optimization method [17]. Primarily, algorithms use the first or second-order derivatives to improve

the convergence. However, for many real-world optimization problems, obtaining derivatives is

impractical or impossible. Thus, gradient-free optimization must be applied, which is, in its more

general form, also known as black-box optimization where no problem-dependent information is

utilized [18].
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Fitness Landscape. Most of the previously discussed problem characteristics are known before

the optimization is applied. However, the nature of the fitness landscape is usually less obvious yet

critical. In contrast to relatively simple uni-modal functions, a multi-modal function with a few

or many local optima increases the problem complexity significantly. Many suboptimal regions

require balancing exploitation and exploration during optimization. Whereas global optimization

focuses on finding the single best optimal solution of a function with possibly many local optima,

multi-modal optimization attempts to obtain all suboptimal solutions simultaneously [19]. When

multiple local or global optima have been found, a common post-processing task is deciding what

solution to choose, which often involves comparing the robustness or sensitivity of solutions.

Uncertainty. Many optimization algorithms assume that the objective and constraint functions

are deterministic. However, especially in applications based on simulations, some underlying

randomness may exist, and thus an evaluation with the same input produces different results. In

other words, this type of problem consists of a non-deterministic function introducing uncertainty

during evaluation. Some researchers address the uncertainty by converting the problem to be

deterministic. The evaluation is repeated with different random seeds in such approaches, and the

average and variance can then serve as objectives or constraints and be optimized. Even though this

might be suitable for some problems, algorithms directly addressing the functions’ stochasticity

are preferred. Different kinds of optimization methods have been proposed in the research field of

stochastic optimization [20].

Evaluation Time. For practitioners, the time spent for optimization stands in trade-off with the

solution’s quality. The time spent in optimization can be divided into two categories: first, time

for evaluating solutions and, second, the algorithmic overhead. In real-world optimization, the

evaluation of a solution often requires utilizing domain-specific third-party software to carry out

simulations, for instance, Computational Fluid Dynamic (CFD) [21] or Finite Element Analysis

(FEA) [22]. The optimization of problems with computationally expensive evaluations justifies

more algorithmic overhead with the goal of selecting solutions to be evaluated more carefully.
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Figure 1.1: Characteristics of optimization problems.

Certainly, this shall not be an exhaustive list of problem characteristics but give the reader of

this dissertation an idea of how fundamentally different optimization problems are. In Figure 1.1,

some of the key challenges are exemplified in a word cloud forming a light bulb. The illustration

figuratively demonstrates the number of possible combinations of difficulties one might face in

practice. Since they all need to be addressed, this also shows the challenge of finding a suitable

optimization method for a specific application problem.

1.1.2 Facing a Computationally Expensive Problem (CEP)

The optimization of computational expensiveness objective and constraint functions has already

been briefly discussed. However, since the computational expense is one of the biggest challenges

practitioners face in practices, some more details are provided next.

One may raise the question, what kind of problems are computationally expensive? Technically,

computational expensiveness is directly related to the number of necessary calculations until the

evaluation has terminated. The number of calculations, in turn, is correlated to the problem’s

complexity and definition. Computationally expensive problems (CEPs) occur in many different
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research areas and applications, and the origin of the computational expense is frequently caused

by a simulation needed to be run. For instance, discrete-time simulations are employed to model a

complex scenario. Let us consider the manufacturing process in a medium-sized enterprise where

optimization aims to maximize productivity. The manufacturing process itself is rather complex

and includes, amongst other things, arranging a production line or planning the production schedule.

The complexity of the process makes it nearly impossible to reduce the objective to a few equations.

Therefore, a discrete-time simulation is a common approach to forecast performance. However, to

conclude with enough certainty, the simulation needs to be run for a large number of time steps,

and thus the performance evaluation becomes computationally expensive. Besides discrete-time

simulations, other simulations commonly faced in practice are computational fluid dynamics (CFD)

or finite element analysis (FEA). Both computationally intense models are used to forecast fluid

flows or other physical phenomena using partial differential equations. Especially in engineering,

they are popularly utilized to make design decisions during development. Apart from simulations,

time-consuming functions are an inherent part of analyzing a large amount of data. Thus, modeling

or predicting based on a large data set requires a longer processing time since it is often unclear

what model with what hyper-parameters to choose.

Instead of addressing the complex problem directly, one might suggest attempting to simplify

the problem to reduce its complexity and, thus, the evaluation time. Simplifications, however,

result in a different optimization problem to be solved, and obtained solutions are unlikely to be

optimal regarding the more complicated model. Thus, we argue simplifications can be misleading

and oversimplify the application to be investigated. For this reason, directly optimizing the CEP

is recommended. However, the optimization method needs to consider the computational expense

for a function call and deal with a limited evaluation budget.

1.1.3 The Role of Surrogate Model in Optimization and Some Terminology

When optimizing a CEP, typically the overall goal is not converging to the true optimum with

many but to obtain a near-optimal solution with only a few solution evaluations. The execution of
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a time-consuming evaluation dominates the algorithm’s computational overhead for finding new

solutions in each iteration. Thus, an algorithm has more time for carefully selecting new designs

than traditional optimization algorithms; however, the evaluation budget is usually only limited

to a few hundred evaluations instead of a few thousand. A standard method to speed up the

convergence of existing methods is using a surrogate model (also called metamodel, approximation

model, simulation model, data-driven model, response surface), which approximates the time-

consuming function. Incorporating a surrogate into the optimization process is indicated by adding

"surrogate-assisted" or "metamodel-based" to the algorithm’s name or description.

Some more terminology used in this thesis is listed in Table 1.1. We distinguish between the time

for a solution evaluation by referring to a computationally inexpensive evaluation using a surrogate

and a time-consuming or computationally expensive evaluation running the application’s evaluation

function. Moreover, in some cases, we emphasize the accuracy levels by differentiating between the

low-fidelity evaluation of the surrogate and the high-fidelity of the application evaluation procedure.

As an abbreviation, we denote the surrogate evaluation by approximate solution evaluation (ASE),

and the application-based assessment simply by solution evaluation (SE) or in some cases to

highlight that no approximation error exists by exact solution evaluation (ESE).

Figure 1.2 illustrates the relation between the time-consuming simulation, the surrogate model,

and the optimization method. The optimization method uses the surrogate model to obtain pre-

dictions of the simulation’s outcome. The surrogate is generated based on data from the time-

consuming simulations in the past. Inevitably, such an approximation model comes along with

Table 1.1: Terminology of different aspects using surrogates.

Aspect Model / Simulation Surrogate

Time
computationally expensive

time-consuming
computationally inexpensive

Accuracy high-fidelity low-fidelity

Evaluation
Exact Solution

Evaluation (ESE)
Approximate Solution

Evaluation (ASE)
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Figure 1.2: The relation between optimization and machine learning.

an inaccuracy. The most fundamental questions in terms of the design of an algorithm using a

surrogate are:

What? Before thinking about how the surrogate is used, one might ask what should be modeled

at all? Since optimization problems might not have only a single target function, objectives and

constraints must be considered during optimization. Thus, for different optimization problems

and algorithms, a different granularity of data exists. For instance, should the constraints be

aggregated to the constraint violation before modeling, or should each constraint value be modeled

separately? Similarly, should the objective values be aggregated with a decomposition function,

or each objective be considered separately? These fundamental questions are interwoven with the

design of an algorithm but need to be answered to propose any type of surrogate-assisted algorithm.

For more information, we encourage the interested reader to look at the taxonomy that describes

all possible combinations to model objectives and constraints [23].

With What? After determining what values a surrogate model should predict, one has to decide

what type of model to use. Numerous models have been proposed in literature, each having

up and downsides. Apart from deciding on the surrogate type beforehand, researchers have

investigated selecting the most suitable surrogate dynamically to improve the robustness of the
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surrogate assistance. A dynamic surrogate selection includes finding the surrogate type and the

surrogate’s hyper-parameters, which rapidly increases the time for modeling. For such a selection,

the suitability of a surrogate needs to be assessed, which requires choosing training and test and

defining an error metric. Both are critical and impact the overall performance of a surrogate-assisted

algorithm.

How? Lastly, the question of how an optimization algorithm utilizes the surrogate is of importance.

The usage of a surrogate is a more open question and could entirely vary from algorithm to algorithm.

Whereas in some algorithms, the surrogates might serve as an assistant, the whole design is based

on it in others. Moreover, the role of the surrogate can differ from being used in the vicinity of

a solution providing local approximations or attempting to forecast the overall trend of the fitness

landscape. Aside from usage, the updating procedure (also referred to as surrogate management)

needs to be addressed and is another critical component for the performance of a surrogate-assisted

algorithm.

These three fundamental questions must be answered when proposing a surrogate-assisted

algorithm. We answer the What question throughout this thesis always by modeling each target

function (objective and constraint) independently. A downside of such an approach is the increase

in the modeling effort for problems with many target objectives and constraints. However, we

argue that the additional computational burden is negligible due to the time-consuming functions.

Moreover, it avoids prediction error accumulation through function aggregation, leading to higher

accuracy. The answer to the With what question follows the recent development of selecting the

best type and parameters of a surrogate dynamically. Finding the most suitable model for each

target function has shown to be a robust solution in surrogate-assisted optimization. More details

and what metric for surrogate selection is used is discussed in each of the chapters. Lastly, the

How question. Different ways of answering How surrogates can be utilized during optimization

shall be discussed in this thesis. Besides discussing how surrogates have been used throughout

literature, we answer this question on a very generic level with only a few assumptions. This keeps
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the proposed ideas applicable to many different types of optimization algorithms. Moreover, the

How question is approached from different viewpoints, such as generalizability, asynchronicity,

and practicability.

1.2 Research Goals and Contributions

This dissertation’s research goals and contributions are stated after introducing the optimization of

computationally expensive functions using surrogate-assisted algorithms.

(i) Analysis and Classification of Surrogate-Based Algorithms

Optimization problems with expensive evaluation functions have become a vital research direction

over the last few years. This dissertation analyzes relevant publications and categorizes them regard-

ing their viewpoints. Moreover, it provides a thematic overview of surrogate-assisted optimization.

It covers essential topics such as what type of surrogates have been used, how constraints or multiple

objectives have been handled in the past, and other recent research trends. Moreover, it presents a

large number of applications demonstrating the importance and practicability of surrogate-assisted

optimization.

(ii) Proposal of a Generalizable Surrogate-Assisted Framework

In the last two decades, significant effort has been made to solve computationally expensive

optimization problems using surrogate models. Regardless of whether surrogates are the primary

drivers of an algorithm or improve the convergence of an existing method, most proposed concepts

are rather specific and not very generic. Some important considerations are selecting a baseline

optimization algorithm, a suitable surrogate methodology, and the surrogate’s involvement in the

overall algorithm design. This dissertation proposes a probabilistic surrogate-assisted framework,

demonstrating its applicability to a broad category of optimization algorithms [24]. The framework

injects knowledge from a surrogate into an existing algorithm through a tournament-based procedure

and continues the optimization run on the surrogate’s predictions. The surrogate’s involvement

is determined by updating a replacement probability based on the accuracy from past iterations.
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The proposed framework enables the incorporation of surrogates into an existing optimization

algorithm and, thus, paves the way for new surrogate-assisted algorithms dealing with challenges

in less-frequently addressed computationally expensive functions, such as different variable types,

a large number of variables, multiple objectives, and constraints.

(iii) Proposal of a Methodology for Heterogeneous Expensive Optimization

A significant amount of research has been done in optimizing computationally expensive functions

using different kinds of surrogate modeling approaches. Most studies, however, assume that the

evaluation of objective and constraint functions are non-separable, and their values are available

at the same time. However, in practice, the target functions can often be evaluated independently

and are differently time-consuming or, in other words, are heterogeneously expensive. In this

dissertation, we first investigate problems with separately computable computationally inexpensive

constraint functions, while the objectives may still be time-consuming [25]. This scenario probably

makes the simplest case of handling heterogeneous and multi-scale surrogate modeling in the

presence of constraints. Second, we generalize the proposed concept to be applied to any kind

of heterogeneously expensive problem [26]. The proposed method sends batches to an evaluator

asking only a subset of objectives or constraints to be evaluated. This also requires dealing with

partial information during optimization. Investigating heterogeneously expensive problems is vital

for optimizing real-world optimization problems.

(iv) A Blueprint for Collaborative Optimization

One of the related issues for surrogate-based optimization is the need for executing the optimiza-

tion task in collaboration between the domain experts and the optimization experts. Collaboration

among different stakeholders in achieving a problem-solving task is increasingly recognized as a

vital component of applied research today. For instance, in various research areas in engineering,

economics, medicine, and society, optimization methods are used to find efficient solutions. Such a

problem-solving task involves at least two types of collaborators – optimization experts and domain

experts. Each collaborator cannot solve a problem most efficiently and meaningfully alone, but a
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systematic collaborative effort utilizing each other’s expert knowledge plays a critical and essential

role. While many articles on the outcome of such collaborations have been published, and the

justification of domain-specific information within an optimization has been established, system-

atic approaches to collaborative optimization have not been proposed yet. In this dissertation,

methodical descriptions and challenges of collaborative optimization in practice are provided, and

a blueprint illustrating the essential phases of the collaborative process is proposed [27]. More-

over, collaborative optimization is illustrated by case studies of previous optimization projects with

several industries. The study should encourage and pave the way for optimization researchers and

practitioners to come together and embrace each other’s expertise as they solve complex problems

of the twenty-first century.

(v) Demonstrating Optimization of Computationally Expensive Functions in Practice

Many real-world problems are associated with computationally expensive and time-consuming

simulations for evaluation. Each candidate design should be selected carefully in such problems,

even though it means extra algorithmic complexity. In this dissertation, two real-world engineering

problems are investigated. First, we demonstrate the optimization of an engine cylinder head

design, which has eight design parameters and two conflicting objectives [28]. Each design

evaluation requires a detailed CFD simulation which takes about one hour using 32 CPUs. The

optimization budget is limited to 61 design evaluations in total. Second, we present the optimization

of an electric machine design optimization of a Toyota Prius 2010 motor. The problem consists of

10 design variables, two computationally expensive objectives, and 10 geometric computationally

inexpensive constraints. The proposed method exploits the independently computable objective

and constraint functions and their difference in evaluation time. The case studies demonstrate the

relevance of optimizing computationally expensive functions in practice.

(vi) Insights on the Design and Usage of an Optimization Framework

Developing an optimization method entirely from scratch can be tedious and very time-consuming.

Thus, choosing an optimization framework or customizing existing algorithms is wise and time-
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saving. As an example, this dissertation discusses the software design and features of pymoo, a

multi-objective optimization framework in Python [29]. As the leading developers of the framework,

we like to give insights into the class structure and organization and the meaning and responsibility

of being in charge of a framework. We cover the architecture’s high-level overview to show

its capabilities, followed by explaining each module and its corresponding sub-modules. The

algorithm implementations are customizable, and the source code can be easily modified/extended

by supplying custom operators. The latter is crucial for rapid prototyping, often employed in

practice.

1.3 Structure of the Thesis

This thesis is structured in the following way. Chapter 2 provides the necessary background

information for the reader to follow along with this dissertation. On the one hand, this includes

the basics of single and multi-objective optimization and, on the other hand, some state-of-the-art

surrogate models. A brief history and a review of surrogate-assisted optimization are presented

in Chapter 3. Moreover, we provide a categorization of existing surrogate-based optimization

methods and give an overview of applications with computationally expensive functions across

research fields. In Chapter 4, a generic surrogate-assisted method is proposed, first for single-

objective optimization and then for constrained multi-objective optimization. In contrast to most

existing approaches, the proposed method can be applied to a variety of metaheuristics. So far, most

assume the evaluation procedure evaluates objectives and constraints all at once. However, since

this is often not the case in practice, we look into the optimization of independently computable

functions with varying expenses in Chapter 5. The proposed method exploits more inexpensive

objectives and defines an information gain metric to find a suitable order for the evaluation process.

In Chapter 6, we present the optimization of two engineering optimization problems with time-

consuming evaluations and insights into collaborative optimization in practice, and the design of an

optimization framework is given in Chapter 7. Finally, conclusions and future research directions

are discussed in Chapter 8.
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CHAPTER 2

FUNDAMENTALS

This chapter lays the foundation for understanding the components of surrogate-assisted optimiza-

tion. First, the goal of (single-objective) optimization is verbally and mathematically defined.

Second, multiple-objective optimization is introduced by explaining fundamental concepts such as

Pareto-dominance and Pareto-optimality. Moreover, we discuss the history and design of genetic

algorithms as they have emerged as the predominant choice for solving multi-objective optimization

problems. Apart from the optimization, three widely used types of surrogate models are presented,

and their benefits and drawbacks are discussed. Lastly, one of the most well-known surrogate-based

algorithms called efficient global optimization (EGO) is described.

2.1 Single-Objective Optimization (SOO)

Before exploring the usage of surrogates in optimization, optimization itself needs to be defined.

Nocedal and Wright describe optimization as "the minimization or maximization of a function

subject to constraints on its variables”[30]. Mathematically, an optimization problem is given by

Minimize 𝑓 (x),

subject to 𝑔 𝑗 (x) ≤ 0, ∀ 𝑗 ∈ (1, . . . , 𝐽),

ℎ𝑘 (x) = 0, ∀𝑘 ∈ (1, . . . , 𝐾),

𝑥
(𝐿)
𝑑
≤ 𝑥𝑑 ≤ 𝑥 (𝑈)𝑑

, ∀𝑑 ∈ (1, . . . , 𝐷),

(2.1)

where x denotes a vector in the search space x ∈ Ω of length 𝐷, 𝑓 (x) the objective function mapping

to a real number, 𝑔 𝑗 (x) the 𝑗-th inequality constraints and ℎ𝑘 (x) the 𝑘-th equality constraint. For

each dimension 𝑑 of the variable vector x, a box constraints is given by 𝑥 (𝐿)
𝑑
≤ 𝑥𝑑 ≤ 𝑥 (𝑈)𝑑

. The

definition only considers minimization as it is known that
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𝑥∗ = argmax 𝑓 (x) = argmin − 𝑓 (x), (2.2)

and thus, any maximization can be converted to a minimization problem. In the remainder of this

thesis, we will explicitly refer to single-objective optimization (SOO) if it shall be emphasized the

optimization problem consists of a single objective function.

2.2 Multi-Objective Optimization (MOO)

In practice, optimization problems often do not consist of only one but multiple conflicting ob-

jectives. For some readers, this seems to be a relatively minor change in the problem definition;

however, it significantly impacts the complexity of the optimization problem. A multi-objective

optimization problem (MOP) is mathematically defined by

Minimize 𝑓𝑚 (x), ∀𝑚 ∈ (1, . . . , 𝑀),

subject to 𝑔 𝑗 (x) ≤ 0, ∀ 𝑗 ∈ (1, . . . , 𝐽),

ℎ𝑘 (x) = 0, ∀𝑘 ∈ (1, . . . , 𝐾),

𝑥
(𝐿)
𝑑
≤ 𝑥𝑑 ≤ 𝑥 (𝑈)𝑑

, ∀𝑑 ∈ (1, . . . , 𝐷).

(2.3)

In contrast to single-objective optimization problems (see Equation 2.1), multiple objectives

𝑓𝑚 where 𝑚 ∈ (1, . . . , 𝑀) are minimized which results in a multi-dimensional objective space of

R𝑀 . The existence of a multi-dimensional design and objective space is illustrated in Figure 2.1.

In this example, the design space consists of three variables (𝐷 = 3), and the objective space

has a dimensionality of two (𝑀 = 2). Each three-dimensional point x in the design space maps

to a two-dimensional point in the objective space 𝑓 (x). It is interesting to observe that the two-

dimensional objective space does not allow us to conclude if one solution p is better than another

solution q by simply comparing two scalar values. Because of an additional dimension in the

objective space, two vectors instead of two scalars have to be compared, and a more general
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Figure 2.1: The design and objective spaces during optimization.

concept is necessary. One of the most important relations between two solutions in multi-objective

optimization is Pareto-dominance:

Definition 2.2.1 (Pareto-dominance) A solution p dominates another solution q with the Pareto-

dominance relation if 𝑓𝑖 (p) ≤ 𝑓𝑖 (q) holds ∀𝑖 ∈ {1, . . . , 𝑀} and ∃ 𝑗 ∈ {1, . . . , 𝑀} such that

𝑓 𝑗 (p) < 𝑓 𝑗 (q).

In other words, a solution p dominates another solution q if (i) p is not worse in any objective

and (ii) is at least strictly better in one objective. Having defined the relation between two solutions,

one can decide if a solution is optimal in a multi-objective context:

Definition 2.2.2 (Pareto-optimal) A solution x∗ is Pareto-optimal if there does not exist any solu-

tion p which Pareto-dominates x∗.

First, one can note that claiming that one solution is Pareto-optimal requires considering its

relation to all other solutions in the search space. Second, the definition allows more than one

solution to be Pareto-optimal. Commonly, researchers refer to all Pareto-optimal solutions in the

design space as the Pareto set (PS). The PS maps to the objective space where it is called Pareto

front (PF) defined by PF = {f (x) | x ∈ PS}. The goal of multi-objective optimization is to obtain

PS and thus PF as quickly as possible.
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Even though the definition of multi-objective problems (see Equation 2.3) includes any value

for the number of objectives 𝑀 , it is worth noting that researchers often refer to optimization

problems with four or more objectives (𝑀 ≥ 4) to many-objective optimization problems. One

reason why 𝑀 ≥ 4 has been chosen is because of the increasing difficulty of visualizing results

in more than three dimensions and the requirement of a different search methodology to handle

many dimensions. For more details about multi- and many-objective optimization, we encourage

interested readers to have a look at Kalyanmoy Deb’s book [9], one of the most formative and cited

books in this research area.

2.3 Genetic Algorithms (GAs)

In the late 1950s and early 1960s, John Holland proposed to mimic sexually reproducing organ-

isms in computer science [31]. Because it did not address recombination but only the mutation,

researchers did not pay much attention to this initial study. Nevertheless, Holland continued his

research and published his seminal book Adaptation in Natural and Artificial Systems [32] which

is together with David Goldberg’s book Genetic Algorithms in Search, Optimization and Machine

Learning [1] is considered as the birth of genetic algorithms. From there on, researchers and

practitioners started to apply evolutionary computation to problems in various research fields, and

it quickly gained popularity. Most other existing optimization methods during that time were based

on a single solution attempting to be improved in each iteration. The major drawback of such

point-by-point search algorithms is their lack of a global view of the fitness landscape increasing

the likelihood of getting stuck in a local optimum significantly. In contrast, genetic algorithms

(GAs) are based on a set of solutions and implicitly explore the search space but still exploit the

knowledge of well-performing solutions using evolutionary operators.

Before describing the overall procedure of GAs, some terms frequently used in evolutionary

computing will be discussed. Researchers commonly refer to the set of solutions as population and

a single solution as individual. Moreover, each iteration of a genetic algorithm is called generation.

An important hyper-parameter of genetic algorithms is the population size which determines the
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Figure 2.2: Flowchart of a genetic algorithm.

number of individuals kept in each generation. Figure 2.2 illustrates the procedure of genetic

algorithms (GAs). First, the initial population is (usually randomly) created and evaluated. Then,

the current population is used to create offsprings by executing a procedure called mating (also

known as recombination). Mating itself consists of three steps: selection, crossover, and mutation.

The selection creates a pool of individuals serving as parents. The crossover operator recombines the

parents to generate one or multiple offspring solutions. The crossover’s design has the challenging

task of incorporating information of all parents to create one or multiple new solutions. Then, the

mutation is applied to each offspring by perturbing solutions with a specific pre-defined probability.

The mating has been completed, and the offsprings are merged with the current population. This

results in a population twice as large as initially. The (environmental) survival applies a natural

selection to the new merged population and reduces it back to its original size. This reduction

mimics the survival of the fittest in biology and is an essential aspect of evolutionary computation.

After the survival, the algorithm either proceeds with the next generation or terminates.

GAs are known as a meta-heuristic because the realization of the evolutionary operators allows

incorporating domain-specific knowledge into the algorithm. The usage of such custom operators in

genetic algorithms is also referred to as customization [33]. One might have realized that processing
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a set of solutions in each iteration is ideal for obtaining not a single but multiple optimal solutions

in the end. Thus, GAs are a suitable candidate for finding a set of optimal solutions due to their

search behavior.

2.4 Data Modeling and Predictors

Data modeling is a well-studied research direction with broad applicability in all kinds of disciplines.

Thus, numerous approximation and interpolation models have been proposed over the last decades.

A model aims to approximate the relation between input X and output y. Let the 𝑖-th data point

of the input be denoted by X(𝑖) with 𝑖 ∈ (1, . . . , 𝑁) and be a vector of length X(𝑖) ∈ R𝐷 . We

refer to the 𝑑-th value of the 𝑖-th data point by 𝑥 (𝑖)
𝑑

and to the corresponding function value of X(𝑖)

by y(𝑖) = 𝑓 (X(𝑖)). Given another set of data points X′ and y′ originating from the same source,

a predictor uses a model based on X and y to provide predictions ŷ′ given X′. Note that in this

dissertation, we generally denote predicted values from models by ˆ (known as the hat symbol).

Generally, the deviation between the predictions ŷ′ and the true values y′ should be minimized.

Some popularly used error metrics for measuring the deviation are the mean squared error, mean

absolute error, or the coefficient of determination.

Since our purpose of using models is their utilization as surrogates during optimization, three

common choices for surrogates – polynomial regression (PR), radial basis function (RBF), and

Kriging – are discussed next.

2.4.1 Polynomial Regression (PR)

One type of surrogate model which has been used very early on in optimization is polynomial

regression (PR). An important parameter of PR is the degree of the polynomial, which determines

the complexity of the model. Let 𝑃(X) be a function mapping an input X to its polynomial

representation. Then, one can formulate a system of linear equations

y = 𝑃(X) 𝛽 + 𝜖, (2.4)
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where y is the output, 𝛽 is coefficients to be found, and 𝜖 is the approximation error. Minimizing

the approximation error 𝜖 results in

𝛽 =

(
𝑃(X)𝑇 𝑃(X)

)−1
𝑃(X)𝑇 y. (2.5)

The shape and values of 𝑃(X) differ depending on the polynomial degree. The most simple

form of polynomial regression is constant where 𝑃(X) is given by

𝑃(X) =
©­­­­­«

1
...

1

ª®®®®®¬
, (2.6)

which plays only a minor role in practice. More interesting, however, is a linear

𝑃(X) =
©­­­­­«

1 X(1)1 . . . X(1)
𝑑

...
...

. . .
...

1 X(𝑛)1 . . . X(𝑛)
𝑑

ª®®®®®¬
, (2.7)

or, quadratic regression

𝑃(X) =
©­­­­­«

1 X(1)1 . . . X(1)
𝑑

X(1)1
2
. . . X(1)

𝑖
X(1)
𝑗

. . . X(1)
𝑑

2

...
...

. . .
...

...
. . .

...

1 X(𝑛)1 . . . X(𝑛)
𝑑

X(𝑛)1
2
. . . X(𝑛)

𝑖
X(𝑛)
𝑗

. . . X(𝑛)
𝑑

2

ª®®®®®¬
, (2.8)

which is employed to estimate the first or second order derivative. It is worth noting that a smaller

degree might not capture the function entirely but indicate trends. In contrast, a larger degree can

model more complex functions but often suffers from overfitting. Moreover, in comparison to other

models, PR does not necessarily fit through all data points exactly.
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2.4.2 Radial Basis Functions (RBFs)

Radial basis functions (RBFs) [34] are real-valued functions used to predict new points through

interpolation. The interpolation is based on the relation between pairs of solutions X(𝑖) and X( 𝑗) .

Given a distance 𝑟 =


X(𝑖) − X( 𝑗)



 between two points, their relation is expressed by a kernel

function 𝑘 (𝑟). Some well-known kernel functions are:

𝑘 (𝑟) = 𝑟 (linear),

𝑘 (𝑟) = 𝑟3 (cubic),

𝑘 (𝑟) =
√︁
𝑟2 + 𝜎2 (multiquadratic),

𝑘 (𝑟) = 𝑒−𝑟2/𝜎2
(gaussian),

𝑘 (𝑟) = 𝑟2 log (𝑟) (tps).

(2.9)

The kernel function determines the type of relation between points. Given two sets of points

𝐴 and 𝐵, the kernel function 𝐾 defines the kernel matrix between 𝐾 (A,B) by applying 𝐾 to all

possible point pairs between a(𝑖) ∈ A and b( 𝑗) ∈ B:

𝐾 (A,B) =
©­­­­­«
𝑘 (a(1) , b(1)) . . . 𝑘 (a(1) , b( |𝐵 |))

...
. . .

...

𝑘 (a( |𝐴|) , b(1)) . . . 𝑘 (a( |𝐴|) , b( |𝐵 |))

ª®®®®®¬
. (2.10)

To fit the RBF model, A = B = and thus the kernel matrix 𝐾 (, ) and the tail 𝑃(), form a linear

system of equations


𝐾 (X,X) 𝑃(X)

𝑃(X)𝑇 0



𝜆

𝑐

 =

y

0

 , (2.11)

to be solved for 𝜆 and 𝑐. The predictions for an unknown set of points X′ is then given by

ŷ′ = 𝐾 (X′,X)𝜆 + 𝑐𝑇𝑃(X′). (2.12)
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RBFs have the advantage of fitting through each data point and a prediction based on distances

to other solutions in their neighborhood. However, one open question is what distance functions

(most researchers use the Euclidean distance) and what kernel functions are the most suitable for

modeling a specific data set.

2.4.3 Kriging

Kriging [35] (also known as Gaussian Process) is a powerful tool frequently used in Geostatistics

and Machine Learning. Similar to RBFs, it uses a kernel function to make inferences [36].

Nevertheless, the motivation of Kriging is entirely different and based on a normal distribution of

functions. The input X and output y are both assumed to be standardized, thus having a mean of

zero and variance of one. Therefore, some data pre-processing might be necessary to apply Kriging

if this is not the case. Predictions are based on a joint distribution between known inputs X and y

and points to predict X′ with their true function values of y′:


y

y′

 ∼ N
©­­« 0,


𝐾 (X,X) + 𝜎2

𝑛 I 𝐾 (X,X′)

𝐾 (X′,X) 𝐾 (X′,X′)


ª®®¬ . (2.13)

Thus, we can derive the conditional distribution

y′ |X, y,X′ ∼ N
(
𝜇𝑦′, 𝜎𝑦′)

)
, (2.14)

where

𝜇𝑦′ = 𝐾 (X′,X)
(
𝐾 (X,X) + 𝜎2

𝑛 I
)−1

y, (2.15)

and

𝜎𝑦′ = 𝐾 (X′,X′) − 𝐾 (X′,X)
(
𝐾 (X,X) + 𝜎2

𝑛 I
)−1

𝐾 (X,X′). (2.16)
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The values of 𝜇𝑦′ serve as predictions ŷ′, and the diagonal of the covariance matrix 𝜎𝑦′ as

the estimated prediction error. Not only providing a prediction but also an uncertainty measure

is one of the major benefits of Kriging. Moreover, an interesting feature of Kriging is automatic

relevance detection which optimizes over the influence of a specific dimension (or feature). This is

done by adding 𝐷 additional parameters to the kernel function, each representing the influence of a

particular dimension. The relevance parameters are usually optimized using a maximum likelihood

estimation. Nevertheless, another layer of optimization can further increase the computational

burden, which is already known to be cubic with respect to the number of data points to fit the

model.

2.5 Efficient Global Optimization (EGO)

One of the most popular surrogate-based algorithms is efficient global optimization (EGO) [37]

(also known as Bayesian optimization (BO)) which shall be briefly explained. Efficient global

optimization (EGO) is based on Kriging and has essentially three phases: (i) fit a Kriging model

given all previously evaluated solutions, (ii) define an optimization problem using the predictions

and uncertainty measure, (iii) solve the optimization problem to obtain a new infill point to be

evaluated. This fit-define-optimize procedure has been widely used over the last years, and many

different variants and extensions have been proposed. The definition of the optimization problem in

(ii) is also known as the acquisition function or infill criterion. Based on the prediction of Kriging,

a common acquisition function is the probability of improvement (PI) defined by

PI(x) = 𝑃
(
𝑓 (x) ≥ 𝑓 (x+)

)
= Φ

(
𝜇𝑦′ − 𝑓 (x+)

𝜎𝑦′

)
, (2.17)

where 𝜇𝑦′ and 𝜎𝑦′ represent the output of Kriging, and x+ the current best solution. One downside

of the probability of improvement is it measures only the likelihood of a solution being improved

but not the amount of improvement. Thus, researchers have proposed expected improvement (EI)

defined by

EI(x) = (𝜇𝑦′ − 𝑓 (x+)) Φ(𝑍) + 𝜎𝑦′ 𝜙(𝑍), (2.18)
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where

𝑍 =


(𝜇𝑦′− 𝑓 (x+))

𝜎𝑦′
if 𝜎𝑦′ > 0

0 if 𝜎𝑦′ = 0
, (2.19)

to encounter this drawback. More details about the history of EGO and its extension will be

provided in Chapter 3.3. It is worth noting that with an increasing amount of data points, the

Kriging model itself becomes computationally expensive. Also, studies have shown that with

increasing dimensionality, the algorithm’s performance deteriorates significantly.

2.6 Summary of the Chapter

In this chapter, we have introduced some fundamental principles and algorithms referred to through-

out this thesis. First, we have presented the basics of single and multi-objective optimization. Sec-

ond, genetic algorithms have been explained, and some basic (surrogate) models were introduced.

Finally, a well-known surrogate-based optimization method called EGO was presented. Altogether,

a brief introduction of fundamentals shall help the reader to follow along with this thesis.
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CHAPTER 3

LITERATURE REVIEW

Even though handling computationally expensive function evaluations seems to be a rather practical

manner, many relevant papers have been published in recent years. In this comprehensive literature

review, we seek to identify the most relevant publications and keywords to get an idea of the recent

developments. It is worth noting that optimizing computationally expensive functions is a task

performed in many different research areas and thus rather interdisciplinary. The interdisciplinarity

causes the authors’ focus of studies and viewpoints to be diverse. Therefore, this chapter aims to

keep the big picture in mind and consider different viewpoints of optimization computationally

expensive functions.

3.1 Different Viewpoints on Computationally Expensive Optimization

Existing publications can be roughly put into three categories based on their focus: goal, method, or

problem. Each viewpoint is reasonable and often determined by the authors’ personal preference.

An overview of each category and its keywords is illustrated in Figure 3.1. Moreover, each type is

discussed in detail next.

Goal. The metadata of a publication, such as a title or keywords, often focuses on the goal or purpose.

It is critical to converge to the (global) optimum with a limited number of function evaluations

when optimizing time-consuming functions. Thus, relevant articles have been published under the

umbrella of efficient global optimization. Moreover, it is worth noting that this is related to anytime

optimization. As indicated by the name, the optimization’s goal is the proposal of methods that

can be interrupted anytime, having achieved the best result possible. Thus, anytime optimization

focuses on developing algorithms considering the whole convergence curves and not only the final

result. Comparing the convergence generally favors quickly converging algorithms to near-optimal

solutions over slower converging algorithms finding the exact optimum.
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MethodGoal Problem

Efficient Global Optimization 
(EGO)

Surrogate-Assisted Optimization 
(SAO)

Simulation-Based Optimization 
(SBO)

Viewpoint: Design a method to 
converge as quickly as possible 
to the global optimum.

Viewpoint: Incorporate 
surrogate(s) into an algorithm to 
accelerate the convergence.

Viewpoint: Solve computationally 
expensive problems (often 
simulations).

Focus: How to design an 
algorithm with a fast 
convergence by trading off the 
algorithmic overhead?

Focus: What algorithm should 
be used to become surrogate-
assisted, and how is the 
surrogate used?

Focus: How can the specific 
simulation problem be solved? 
More domain-specific solutions, 
such as different granularities of 
a simulation or data separation, 
might be performed.

(Sequential) Model-based 
Optimization

Anytime Optimization
Bayesian Optimization

Expensive Black-Box 
Optimization

Data-Driven Optimization 

Figure 3.1: An interdisciplinary research area with different terminologies based on the perspective:
goal, method, and problem.

Method. In contrast to the goal of optimization, the methodology to achieve the goal is frequently

focused on. Thus, the authors emphasize the usage of surrogates during optimization as it is an

inherent part of the proposed algorithm. It is worth noting that, nevertheless, researchers refer to a

model commonly as surrogate; however, other terms such as metamodel, response surface model,

approximation model, or simulation model have also been used in the past [38]. Although some

terms might have (slightly) different meanings, one might find relevant publications by refining the

search considering a different terminology.

Problem. Apart from emphasizing the goal or method, some researchers focus on the computation-

ally expensive application itself. Problem-related literature requires a search regarding different

types of applications that are either computationally expensive or supposed to be optimized with a

minimal budget of function evaluations. Typically, simulation-based problems are of an expensive-

ness nature and are thus worth searching for. An evaluation time of a couple of hours or even days

is quite common. Moreover, one can think of optimization problems where a large amount of data

needs to be processed. Data-intensive studies frequently address the use of distributed systems to
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Goal
12.9

(1306)

Method
63.4

(6437)

Problem

23.8
(2414)

Figure 3.2: Overview of the overall percentage of each viewpoint.

parallelize and speed up function evaluation. So far, less attention has been paid to the usage of

surrogates in such fields.

Identifying categories and keywords is essential for a comprehensive literature review. Next,

we provide some more context and statistics about the viewpoints on optimizing computationally

expensive problems described above.

3.2 Surrogate-Based Optimization: History and Recent Trends

Next, the importance and frequency of each of the viewpoints are evaluated. To visualize the

interest and activity in the whole field and show the authors’ usage of different viewpoints, we have

performed a keyword analysis using Scopus [39]. The keywords and queries of the analyses can

be found in Appendix A. In Figure 3.2, the distribution of keywords mentioned in the publication’s

title is shown. It is apparent that most publications (63.4%) focus on the method itself and directly

mention the surrogate or synonyms somewhere in the title or abstract. Nevertheless, a significant

amount of research has also been conducted targeting the problem (23.8%) or the goal (12.9%).

The distribution of the different viewpoints demonstrates the importance of looking at all facets of

optimizing computationally expensive functions.
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Figure 3.3: Analysis of the literature regarding publications related to surrogate-assisted optimiza-
tion from 1995 to 2021.

Besides the overall distribution of viewpoints, the development over the last years shall be

discussed. Figure 3.3 shows the number of publications in each year categorized by goal, method,

and problem. The x-axis represents each year starting from 1990 to 2021, and the y-axis is the

absolute number of publications. Each line is based on the number of publications in the specific

year if the metadata includes at least one representative keyword of the category. Please note that

one publication can be assigned to more than one category in this case. The aggregated curve,

however, represents the sum of all publications, counting each publication exactly once. First, one

can observe an increasing trend throughout all categories. This increase is not least caused by

the relevancy of addressing the computational expensiveness in practice. Second, for publications

focusing on the method, an almost exponential trend can be observed, whereas the goal and problem

seem to behave more linearly. One possible reason for this trend is the usage of the term surrogate

which has become the first choice by many researchers.

One venue where the usage of surrogates found a place is the genetic and evolutionary com-

putation conference (GECCO) [40]. GECCO is one of the largest peer-reviewed conferences in
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Figure 3.4: Overview of surrogate-assisted and related publications at The Genetic and Evolutionary
Computation Conference (GECCO) from 2005 to 2020.

the field of Evolutionary Computation and the leading conference of the Special Interest Group on

Genetic and Evolutionary Computation (SIGEVO) of the Association for Computing Machinery

(ACM). In addition to evolutionary methods, researchers started to discuss approaches aiming

to solve computationally expensive problems. To draw some conclusions about the development

in the field, we have analyzed the number of publications addressing computationally expensive

problems from 2005 to 2021. We have used the BibTeX files provided by ACM for this analysis and

have filtered out all publications with two pages or less (poster publications). We have identified

publications related to surrogate-assisted optimization by a keyword search1 in the titles since the

conference’s focus is methods and applications related to optimization, no other precautions to

avoid finding irrelevant studies needed to be taken.
1Keywords: surrogate, metamodel, model-based, computationally expensive, Kriging, Gaussian process, radial

basis, response surface, EGO, efficient global optimization
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In Figure 3.4, the years are shown on the x-axis and the percentage of publications matching

the criteria for being related to surrogate-assisted optimization on the y-axis. The number of

publications is located on top of each bar, and the number of each year’s accepted publications is

printed below. One can observe an increasing trend, especially from 2017 onward. In 2020 more

than eight percent of all publications are related to surrogate-assisted optimization and address the

optimization computationally expensive optimization problems, which is encouraging.

So far, this chapter has introduced different viewpoints and provided some insights into the

research field’s development. Next, a thematic literature review of state-of-the-art methods for

optimizing computationally expensive problems is provided, and recent trends are discussed.

3.3 Relevant Literature and Applications

All algorithms utilizing surrogates during optimization have to find an answer to the What?, With

what?, and How? questions discussed in Chapter 1.1.3. These questions are directly related

to important topics in surrogate-assisted optimization, such as what type of surrogate or what

optimization algorithm is used.

Type of Surrogate. The type of surrogate is a critical answer to the With what? question. The

surrogate is generated based on information obtained through time-consuming evaluations from

the past. Fitting a model based on data is a common task for Machine Learning methods [41]

and thus a research field where many ideas originate or are borrowed from, especially in data-

driven optimization [42]. Frequently, surrogates are used to predict the objective and constraint

values directly. In general, for such a prediction, one can distinguish between approximation and

interpolation models. Approximation models are not necessarily returning the exact values of the

training data during prediction. For instance, PR [43, 44, 45] with a predefined degree is used to

approximate the objective function. In [45], a linear regression model has been utilized, for which

the prediction variance and inference quality can be determined. Many optimization algorithms use

a replacement strategy and keep the newly evaluated solution if it outperforms the current one. For

such decision-based optimization algorithms, Support Vector Machines (SVMs) [46, 47] have been
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employed to predict the outcome of the replacement decision. The predictions are based on binary

classification (will the new solution outperform the current one) by drawing a decision boundary

in the design space [48]. By predicting the outcome of decisions, surrogate-assisted algorithms

attempt to look at one or multiple iterations into the future using a surrogate [46] and thus improve

their convergence behavior. It is worth noting that approximation models, such as polynomial

regression with a smaller degree and SVMs, minimize the training error but will often not reduce it

to zero due to the models’ simplicity. In contrast, interpolation models attempt to fit each point of

the data set exactly. A widely used interpolation model for surrogate-based optimization is Kriging

(also known as Gaussian Process) [37, 49, 50, 51, 52, 53]. Kriging is known to be a good choice

for problems with a low number of decision variables. One challenge of incorporating Kriging into

an algorithm is the choice of a suitable hyperparameter configuration and the numerical instability

for imbalanced data sets [54]. Numerous implementations of Kriging in all kinds of programming

languages exist, but the Matlab DACEfit toolbox [55] made available by Lophaven et al. is one

of the most commonly used by researchers. For optimization problems with a larger number of

variables, researchers have frequently chosen RBFs as surrogates [54, 56, 57, 58, 59, 60]. In

general, RBFs have been not only be used to model the function globally but also locally [57].

Similar to other surrogates, RBF uses kernel functions of a specific type (for instance, linear, multi-

quadratic, gaussian), which is an important hyper-parameter to be considered [58]. In contrast to

Kriging, RBFs do not provide any information about the estimated error or uncertainty; however,

distances to existing high-fidelity evaluated points have been used instead [59]. Moreover, Neural

Networks [61, 62, 63, 64, 65] have been utilized to model data sets. Even though neural networks

are very effective in fitting data accurately, they have only been sporadically used for surrogate-

assisted optimization. The main reason for that is the challenge of using neural networks with a

limited amount of data [66].

Most of the surrogate types mentioned above are designed for real-valued input data spanning a

continuous search space. For discrete variables, however, Random Forests have shown promising

results [67, 68, 69, 70, 71]. For instance, Hutter et al. [67] have proposed a sequential model-based
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algorithm configuration (SMAC) method, which is well-known for finding optimal hyperparam-

eters without any manual tuning [67]. Also, some researchers have investigated surrogates for

mixed variables types, for instance, a combination of continuous and discrete variables [72, 73].

Furthermore, Walsh functions [74] have recently been discovered to serve as surrogates for discrete

optimization problems [75, 76]. Walsh functions can decompose any function of the Hilbert space

and be naturally used as a basis for the space of pseudo-boolean problems [75]. Compared to other

surrogates, Walsh functions are comparably computationally inexpensive and can be extendable for

other variable types such as permutations [76]. They have been used for mutation in evolutionary

algorithms [77] and might be one possible promising research direction for surrogate-assisted op-

timization. Furthermore, the tree-structured parzen estimator (TPE) [78, 79] has been utilized by

surrogates for continuous, discrete as well as mixed variable problems. Whereas Kriging directly

models 𝑝(𝑦 |𝑥), TPE models 𝑝(𝑥 |𝑦) and 𝑝(𝑦) (where 𝑥 is defined by the variable and 𝑦 by the

objectives or constraints) [78]. Among other things, TPEs have been used for hyper-parameter

optimization for neural networks and computationally expensive multi-objective optimization [79].

When having to choose from several surrogate types, it can be challenging to commit to a specific

type during algorithm design. Also, intuitively the suitability of a surrogate depends on the fitness

landscape [80]. Thus, the performance of different surrogates for different types of problems

has been compared [81]. Moreover, methods using an online surrogate selection, also known as

surrogate ensembles, have been proposed [54, 82, 83, 84, 85]. The ensemble of surrogates can

be incorporated in different ways. For instance, a set of solutions can be obtained where each

solution corresponds to an optimum found on a specific surrogate. Alternatively, one may combine

all surrogates by taking the average of the predictions [82]. In [83], the authors have addressed the

so-called curse of uncertainty by employing a weighted average of surrogate’s prediction where

the weight is proportional to the surrogate’s root mean squared error. In contrast, the variance

of predictions from a surrogate ensemble has been utilized as a measure for robustness in [56].

The amount of publications addressing different kinds of surrogates is quite large. Each surrogate

has its benefits and drawbacks, which is indicated by the variety of surrogates used in different

32



studies. However, a general recommendation for what type of surrogate is suitable for what type of

optimization problem is still an open question [38, 86].

Type of Algorithm. Early on, researchers have realized that response surfaces – a synonym for

surrogates – are helpful to be used for optimization. [87, 88, 89]. A response surface has been

fitted through a data set referred to as the design of experiments created in a space-filling manner.

Then, an optimization algorithm is executed on the response surface, and an optimal solution is

obtained [87]. This procedure became especially popular in engineering and is also known as

offline or non-adaptive surrogate-assisted optimization. However, such a non-adaptive approach

assumes the model to be relatively accurate and does not account for any model error. Because

for most applications, an underlying modeling error is inevitable, a sequential surrogate update has

emerged as one of the crucial components of surrogate-based optimization methods [90].

Sequentially updating surrogates opens up many different possibilities of making use of an approx-

imation model during optimization. One type of algorithm where the surrogate is a substantial

part of the optimization procedure is Bayesian optimization [91], also known as EGO [37, 92]. In

EGO, the surrogate – typically Kriging [35] – provides a prediction and an uncertainty measure

used to find a trade-off between exploitation and exploration. Both aspects are addressed by so-

called acquisition functions (or infill criteria) such as expected improvement [37] or probability of

improvement [92]. Especially in lower-dimensional search spaces, the exploration aspect in the

acquisition function is important [93]. Other types of surrogate and scalarization techniques have

been studied, such as radial basis functions with distance-based uncertainty measure [94] or linear

spline function with a customized probability function [95]. All EGO approaches have a common

embedded (global) optimization algorithm using the surrogate’s predictions. The limitation of find-

ing only a single new solution in each iteration has been investigated thoroughly, and multi-point

EGO approaches have been proposed [96, 97, 98, 99, 100]. Some known challenges of EGO are

dealing with a large number of variables and numerical instabilities introduced by a biased solution

distribution in the search space [54].
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Instead of letting surrogates be the most substantial part of an algorithm’s design, they have also

been used to guide the search of existing algorithms. For instance, for evolutionary algorithms,

a prescreening with surrogates has been commonly employed to improve the convergence [101,

102, 103, 104]. For prescreening, a larger number of offsprings is created through mating, and

the surrogate predicts their fitness. Then an environmental selection is applied to reduce the

offspring to a few being evaluated on the time-consuming function [101]. Such incorporation of

surrogates is also known as generation-wise evolutionary control [105] and introduces naturally

bias towards solutions being predicted to be more promising. Moreover, surrogates are incorporated

into memetic algorithms [106] – evolutionary algorithms with an embedded local search – where

they assist the local search in becoming more efficient [83].

Another well-known metaheuristic and type of evolutionary algorithm is differential evolution

(DE) [107] known to be especially effective for the global optimization of continuous vari-

ables [108]. In DE, the mating is based on a crossover with a mutated individual. The mutation

is based on the addition of a weighted differential vector. An offspring replaces an individual of

the current population if its performance is superior. In [109] the surrogate serves as a classifier

predicting whether a solution will be replaced or not; thus, if an offspring outperforms the current

solution. This is in contrast to [110], where the authors propose only evaluating the most promising

offspring based on the surrogate’s prediction. Furthermore, the algorithm’s global search has been

complemented by a local search assisted with a surrogate [111]. The combination of global and

local search provides an indirect impact through biased recombination and direct impact through a

local refinement. Another approach has been proposed in [60], where the surrogate filters out only

the most promising solutions analogously to the prescreening for genetic algorithms.

Besides DE, variants of the well-known model-based evolutionary algorithm covariance matrix

adaptation evolution strategy (CMA-ES) [112, 113] with assisting surrogates have been pro-

posed [46, 48, 114, 115, 116, 117]. In CMA-ES new candidate solutions are sampled according

to a multivariate normal distribution which is continuously updated based on the best perform-

ing individuals determined by their rank. In [115], locally weighted (quadratic) regression [114]
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approximates the ranking before the expensive evaluation takes place. One drawback of such a

relatively simple approximation model is its simplicity and the lack of suitable fit for more complex

fitness landscapes. Moreover, a full quadratic model requires a large number of solutions with in-

creasing search space dimensionality, which has been addressed in [46]. Later on, the authors have

proposed to replace the quadratic regression with a rank-based Support Vector Machine [48] with

a Gaussian kernel. As a kernel matrix, the covariance matrix adapted from CMA-ES itself is used.

Although the proposed method has shown to be more efficient, the results also indicate premature

convergence on problems with a multi-modal landscape. These issues have been addressed, and

the method has been further improved by the authors in [116], which only exploits the surrogate if

it is sufficiently accurate.

Moreover, surrogates have been incorporated into particle swarm optimization (PSO) [118]in

various ways. Similar to evolutionary algorithms, a generation can be simulated on the surrogate

before being evaluated on the computationally expensive evaluation [119]. Another interesting

way of using surrogate knowledge is the modification of the algorithm’s social component. For

instance, in [120], attractors are derived from an embedded optimization on the ensemble of local

and global surrogates and, thus, improve the algorithm’s convergence.

Multiple objectives. Optimizing multiple conflicting objectives at a time has been extensively

studied in the last decades. However, improving the convergence by incorporating surrogates re-

quires rethinking current approaches. Evolutionary algorithms are commonly employed to solve

multi-objective problems because their population-based search fits the desire of obtaining a non-

dominated set of solutions. A comprehensive overview of evolutionary algorithms assisted by

surrogates can be found in [121]. The authors discuss 45 different algorithms proposed in the

literature and categorize the approaches regarding their type and the number of surrogates. More-

over, we encourage interested readers to look at [122] for a more general overview of methods,

challenges, applications, and recent developments in the research field. Commonly, multi-objective

optimization algorithms are either based on dominance, decomposition, or indicators to address the

existence of larger dimensional objective spaces [121]. For each approach incorporating a surrogate
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has to be implemented differently. For instance, in [64, 123] a classifier has been learned to deter-

mine whether an offspring is dominated. The decision boundary drawn by the classifier to make

the decisions regarding dominance is used to filter out non-promising offsprings without evaluating

them expensively. Moreover, the approximations of objectives and constraints can be utilized to

prescreen a set of solutions. For instance, Chugh et al. proposed KRVEA [124] – an extension of

RVEA [125] with Kriging as a surrogate – performing a survival with the predictions of a surro-

gate before evaluating solutions expensively. In 2006, Joshua Knowles proposed ParEGO [126],

where an iteration of the well-known EGO [37] algorithm is performed on scalarized objective

values. The decomposition is based on the augmented Tchebycheff aggregation function [127]

with a weight vector uniformly drawn from a set of reference directions. The rather expensive

surrogate implementation has been further improved later on to handle a solution set up to a size

of 500 [128]. In [129], Li et al. proposed a Kriging Metamodel Assisted Multi-Objective Genetic

Algorithm (K-MOGA), which keeps expensively evaluated and predictions by the surrogate in the

same population. The algorithm determines dynamically whether the predicted values need to be

evaluated by the time-consuming function based on their domination status. The domination status

considers the distances between non-dominated and dominated solutions and aims to represent the

prediction error of the surrogate. Despite predicting each individual separately, the surrogate has

been utilized to predict a multi-objective performance indicator. For instance, in [130], the authors

proposed a Selection-based Efficient Global Optimization (SMS-EGO) algorithm, which uses the

S-metric [131] as an infill criterion. The infill criterion was further adapted to consider a step-wise

uncertainty reduction in [132] and a computationally cheaper infill criterion with similar perfor-

mance [133]. In 2010, Zhang et al. proposed MOEA/D-EGO [134], which is a combination of the

EGO idea and the MOEA/D [11] in general and was able to outperform ParEGO. MOEA/D-EGO

fits local surrogates in the neighborhood determined by fuzzy clusters [135] and can evaluate more

than one solution in each generation. Moreover, Habib et al. proposed Hybrid Surrogate-Assisted

Multi-objective Algorithm (HSMEA) addressing computationally expensive many-objective opti-

mization problems [136]. The proposed method is capable of handling constraints and keeps two
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archives to improve the performance for irregular Pareto fronts. Also, it incorporates a local search

subject to the angle of reference directions to improve the equality of infill solutions. The results on

a wide range of test problems indicate that HSMEA performs significantly better than CSEA and

K-RVEA. Recently, an adaptive Bayesian approach has been proposed by Wang et al. [137], which

is based on the EGO principle but tunes the hyperparameter of the acquisition function according

to search dynamics. The proposed method balances the exploration and exploitation by switching

between an angle-based distance and an angle-penalized distance throughout the optimization. The

method showed promising results on test problems and one real-world problem with a budget of

300 function evaluations.

Constraints. Efficient constraint handling plays a vital role in computationally expensive prob-

lems [59, 60, 94, 111, 138]. In the early phase of surrogate-assisted optimization, rather simple

approaches have been used to address constraints. For instance, in [94] mostly box constraints

have been considered for which it was not necessary to fit a surrogate because of their simplicity.

Later on, methods have been proposed to handle more realistic computationally expensive problems

with constraints using the feasibility first principle. In [59] the algorithm’s performance has been

shown on a real-world problem from the car industry with 68 inequality constraints. The proposed

method uses the predictions of surrogates to approximate the constraint functions to find candidate

solutions with the least constraint violation. A few solutions are selected from these candidates by

a weighted ranking considering the predicted objective values and their distance to existing already

evaluated solutions. Similarly, a feasibility prescreening has been proposed in [60], where the

surrogate is utilized to improve the probability of evaluating a feasible solution in each generation.

A more indirect way of surrogate-assisted constrained handling using a tournament selection based

on predictions has been investigated in [111]. Based on predictions, two individuals compete with

each other intending to choose the better one. If both solutions are feasible, the least infeasible

of the two; if both are infeasible, the more feasible of the two. This selection pressure naturally

introduces bias to evaluate feasible solutions in a genetic algorithm. Also, a common technique

to deal with constraints by penalizing the objective function has been investigated using surro-
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gates. As known for computationally inexpensive problems, the constraint violation’s weighting is

important to balance the impact of feasibility and infeasibility. In [139] the authors proposed to

weigh the penalty in proportion to the number of feasible solutions. Results have shown that such

an approach outperforms a constant weighting throughout the run of an algorithm. In [138], the

proposed method minimizes the constraint violation until a feasible solution has been found and,

second, aggregates the objective and constraint using a modified expected improvement function

to proceed. Altogether, constraint handling is an essential aspect of optimization in practice, and

it should be considered during the algorithm design. However, existing studies do not allow us to

derive a clear tendency toward a surrogate-based constraint handling approach performing better

than others.

Heterogeneous Computation of Functions. Less attention has been paid to problems with ob-

jective and constraint functions with varying expensiveness. Studies are limited to bi-objective

problems where one objective is computational expensive and the other computational inexpensive

(cheap) [140, 141, 142, 143, 144]. In 2013, Allmendinger et al. [140] has laid the foundation for

investigating heterogeneously expensive optimization problems and proposed baseline methods,

such as waiting for the slow objective to be evaluated or using the nearest neighbor approximation

with Gaussian noise as a prediction. The authors extended their initial study in [141] in which

they proposed evolutionary algorithms where the cheap objective is used as a look-ahead function

for one or more generations. In 2018, Chugh et al. have proposed HK-RVEA [142], which uses

Kriging as a surrogate to approximate the expensive objective. Moreover, a trust-region-based

algorithm with quadratic approximations for objectives has been investigated later on in [143].

Wang et al. proposed the usage of transfer learning to make inferences about the more expensive

objective from the cheap one [144]. It is worth noting that the difference in expensiveness between

the objectives is critical. In existing studies, it has been assumed that one objective is two, five, 10,

or 15 times slower than another [142, 144].

Miscellaneous. Different characteristics and challenges of optimization problems have been already
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discussed in Chapter 1. A few of them shall now be reviewed with respect to surrogate-assisted

optimization. The optimization problem might be computationally expensive but also have a

large number of variables that need to be paid extra attention. To deal with such problems,

either the algorithm handles the large-scaled decision space directly [145], or a feature selection is

performed [146, 147]. Some real-world problems do not contain only a single optimization problem

but multiple, which can be put in a hierarchy. These problems are especially challenging due to

the embedded optimization which needs to be performed. For a bi-level optimization problem,

the lower-level can be approximated by a surrogate [148]. Moreover, it is worth mentioning that

simulations are often not deterministic and, thus, stochastic optimization shall be used [149]. Non-

determinism implies that two uncertainties, one from the simulation and one from the surrogate,

accumulate. Some simulations allow defining different levels of accuracy. For instance, running a

simulation for one hour provides function values with a confidence level of 95%, whereas running

it for two hours increases it to 99%. Optimizing such problems is commonly referred to as

multi-fidelity optimization [150]. For example, the existence of multiple fidelity levels have been

addressed with linear regression models in [45], and a test problem suite was proposed in [151].

Furthermore, the usage of surrogates in dynamic optimization has to be investigated. For instance,

in [152] the concept drift during optimization is addressed using a sliding window approach for the

surrogate data to be fitted. All these challenges of real-world optimization problems show what

type of problems need to be looked at in connection with expensive functions.n

Applications. Many practical optimization problems consist of expensive function evaluation.

Thus, surrogate-assisted optimization has been widely applied in all kinds of interdisciplinary

research areas. In the following, we highlight applications and research fields that have shown to

be of importance and have had a significant impact. Table 3.1 provides an overview of research

fields and concrete applications addressed in the literature.

Some problems directly related to Computer Science have an expensive evaluation function [67,

71, 153, 154, 155]. Most existing algorithms in the literature have parameters, also referred to

as hyperparameters, which shall be tuned to maximize the performance. Hyperparameter-tuning
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is especially expensive for non-deterministic algorithms where performance assessment requires

running multiple runs [67]. One such example is finding a well-performing architecture of a neural

network. Each network design requires optimizing the corresponding weights, which usually

requires lots of computational resources and time [71, 153]. Moreover, learning decision policies,

as commonly done in reinforcement learning, is a time-consuming task and requires many iterations.

Thus, instead of interacting in the live environment, surrogates have been used to speed up the

convergence time [154, 155].

Besides Computer Science, many other multidisciplinary research fields require the optimization

of computationally expensive functions. For instance, in environmental optimization, various

simulations of different kinds of optimization problems have been applied. One way of addressing

risk is by simulation of possible scenarios in the future. For instance, time-consuming simulations

have been optimized to forecast wildfire behavior [156], the seismic risk based on stochastic

ground motion [157], or the spread of a pandemic [69]. Apart from assessing the risk or predicting

the future outcome, the performance evaluation of configurations or policies is frequently based

on simulations. For instance, surrogates have been used to obtain an optimal robotic milking

barn facility allocation and to investigate the design’s relation to herd size, feeding routine, and

management practices [158]. Also, surrogates have frequently been employed to improve the

convergence on problems related to water distribution systems in different ways, such as data-

driven, projection, and hierarchical-based approaches [159, 160, 161, 162]. Furthermore, other

environmental problems with expensive simulations related to the wind farm layout [163], reservoir

management [164, 165], aquifer systems [166], sustainable transportation [167] , wood-based

composite materials [168], nuclear power plants [169], wind waves [170] have been investigated.

In general, the goodness of an engineering design often requires simulations for evaluation pur-

poses. One research field is the design of aircraft structural components where CFD simulations

are performed to predict aerodynamic forces and aerodynamic efficiency [173, 174, 175, 176].

Despite optimization related to the exterior shape of an airplane, surrogates have been employed

to model turbulent reacting flows of aeronautical combustion chambers [178]. Also, simulations
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Table 3.1: Overview of surrogate-assisted optimization being used in different kind of applications.

Research Field Topic

Computer Science Algorithm Configuration [67], Neural Architecture
Search [153, 71], Reinforcement Learning [154, 155]

Environment
Agriculture

Seismic Risk Assessment [157], Wild Fire Spread [156], Pan-
demic Forecasting [69], Crop Yield [171, 172], Aquifer Sys-
tems [166], Water Management [159, 160, 161, 162], Reservoir
Management [164, 165],
Robotic Milking Barn [158], Sustainable Transportation [167],
Wind Farm Layout [163], Wood-based Composite Materi-
als [168], Nuclear Power Plant [169], Wind Wave [170]

Engineering Aircraft Structural Components [173, 174, 175, 176], Heli-
copter Rotor Design [177], Aeronautical Combustion Cham-
bers [178], Vehicle Crashworthiness Design [179, 180], Ve-
hicle Body Lightweight [181] DC Motor [182], Building Per-
formance Simulation [183, 184, 185, 186], Fused magnesium
furnaces [187, 188], Antenna [189, 190], Microwave Struc-
ture [191, 192, 193], Circuit Design Centering [194], Modular
Flowsheet Optimization [195],

Medicine
Biology

Health Care Operation Management [196, 197] Resource Plan-
ing Emergency Department [198], Trauma System [70], Breast
Cancer [199, 200], Medical Image Registration [201], Protein
Engineering [202]

Business
Operations

Production Planing [203], Supply Chain [204], Traffic [205,
206, 207], Inventory Management [208, 209], Job Schedul-
ing [210, 211], Enterprise Architecture [212], Manufactur-
ing [213], Recommender Systems [214], Portfolio Optimiza-
tion, Maintenance [215]

are not limited to airplanes but also have been applied to design the helicopter rotor in [177].

Another critical research direction is simulations related to automobiles. For instance, studies to

maximize the vehicle’s crashworthiness [179, 180], minimize the vehicle body weight [181] or

to control the direct speed of a DC Motor have been conducted [182]. Moreover, the design of

buildings has been investigated [183, 184, 185, 186]. Optimization problems consist mostly of a

discrete search space and multiple objectives such as environmental quality or building energy con-

sumption. Moreover, expensive simulations are performed in electrical and chemical engineering.

For instance, surrogates have been utilized to optimize the antenna’s design regards to maximum
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gain, maximum front-to-back ratio, and minimal ground plane area [189, 190], the microwave

design [191, 192, 193], circuit design centering [194], or a chemical modular flowsheets [195].

Apart from engineering, expensive simulation problems frequently occur in the medical and bi-

ological research field. For instance, studies about simulations of schedules of operations in a

hospital in general [196, 197] or resource planning in an emergency department [198] have been

conducted. Moreover, the design of a Trauma System [70] in Colorado with regards to the waiting

time until a patient is being treated and the suitability and quality of treatment. The problems were

driven by a data set with 100,000 emergency records of 72 hospitals with five different capability

levels. Furthermore, more medical-related tasks such as the prediction of the growth of breast

cancer [199, 200] or image registration (a process of transforming different sets of data into one

coordinate system) [201] have been assisted by surrogates.

Also, in operation research, simulations are necessary to evaluate the outcome. Expensive simu-

lations can take place anywhere along the value chain, such as manufacturing [213], production

planing [203], supply chain management [204], or inventory management [208, 209]. For each

task, the management has to choose one implementation out of many possible combinations by

optimizing the company’s objectives. For companies where logistics play a more critical role,

simulations have been employed to optimize the (freight) traffic [205, 206, 207]. For marketing,

so-called recommender systems suggest products to customers based on the current shopping cart

or purchase history. Obtaining such suggestions can be computationally expensive because they

are often based on a large amount of data, and thus surrogates have been used [214].

The variety of applications requiring expensive simulations demonstrates the need for suitable

algorithms. For most such applications and simulations, surrogates have been employed to address

the time-consuming simulations and make approximates available to the algorithm.
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3.4 Summary of the Chapter and Open Issues

This chapter has provided an overview of surrogate-assisted optimization from different view-

points. Moreover, we have presented a number of applications with time-consuming simulations

demonstrating the relevance of research investigating the optimization of computationally expensive

functions.

Despite all achievements in surrogate-assisted optimization over the last years, a few research

directions have been paid only a little attention [38]. Many algorithms that have been proposed

are rather specific and not very generalizable. Thus, a lot of surrogate-assisted methods address

only a specific problem class. This results in numerous surrogate-assisted variants of algorithms

where it is unclear what method is the most appropriate for an application problem. Thus, there

is a need for a more general methodology to incorporate surrogates into an existing algorithm.

Moreover, most studies assume that the objective and constraints are not separably evaluable and

have the same evaluation time. However, for many real-world problems, the evaluation consists

of calling different functions or third-party software products. Therefore, the independence with

possibly varying evaluation times shall be directly exploited by an optimization method. Such

practicable aspects have mostly been neglected so far in literature and are worth investigating.

Besides aspects directly related to the optimization of time-consuming functions, optimization

often is interdisciplinary and requires collaborations. Rarely, the characteristics and realizations of

such collaborations have been focused on. However, in practice, collaboration is essential for the

overall success of the project.
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CHAPTER 4

A GENERALIZED PROBABILISTIC SURROGATE-ASSISTED FRAMEWORK

This chapter proposes a methodology for incorporating surrogates into metaheuristics and op-

timization in general. After showing the importance of considering the computational expense

during optimization, different surrogate-based approaches are categorized regarding the role of the

surrogate during optimization and the interdependency of the algorithm’s design. First, we focus

on computationally expensive single-objective optimization problems and propose a framework to

incorporate surrogates into the optimization procedure. The incorporation is based on a probabilis-

tic selection from a search pattern created by optimizing the surrogate. Afterward, we generalize

this concept to solve constrained multi-objective problems by incorporating the Pareto-dominance

principle and constraint violation of solutions into the probabilistic selection scheme. The majority

of this chapter is based on [24] and [216] with some minor modifications to ensure consistency

throughout this thesis.

4.1 Introduction

Many optimization problems are computationally expensive and require the execution of one or mul-

tiple time-consuming functions to evaluate a solution. Expensive optimization problems (EOPs) are

especially important in practice and are omnipresent in all kinds of research and application areas,

for instance Agriculture [172], Engineering [179], Health Care [196], or Computer Science [153].

Often the expensiveness of the evaluation is caused by the requirement of running a simulation,

such as Computational Fluid Dynamic (CFD) [21], Finite Element Analysis (FEA) [22], or pro-

cessing a large amount of data [217, 70]. It is worth noting that the majority of simulation-based

data-intensive problems is black-box in nature [218] and gradient information is not available or

even more time-consuming to derive. This makes it even more vital to address the time-consuming

objective and/or constraint functions as an inherent part of the optimization problem and limit the

overall evaluation budget significantly.
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The computational expensiveness is most commonly addressed by the usage of so-called surro-

gate or metamodels [104]. Substantial effort has been made based on a well-known approach known

as efficient global optimization (EGO) [37]. The solutions being evaluated in each iteration are

based on the optimum of a utility optimization problem – also known as infill criterion – commonly

defined by the surrogate’s value and error predictions from Kriging [35]. Original limitations such

as the evaluation of a single point per iteration, the lack of constraint handling, or dealing with

multiple objectives have been investigated, and extensions have been proposed [126, 219]. Overall,

the algorithm can be reduced to a fit-define-optimize procedure where the utility problem definition

becomes more challenging when new problem complexities need to be handled. Moreover, the

surrogate model is the core of all EGO approaches, and its accuracy is inevitably more critical for

the algorithm’s performance.

Another category of surrogate-assisted algorithms uses an existing optimization method but in-

corporates one or multiple surrogates more organically [105]. Such approaches aim to improve the

convergence behavior of the baseline algorithm and, thus, the anytime performance. Researchers

have explored different ways of incorporating surrogates into well-known population-based algo-

rithms, such as genetic algorithms (GA) [1], differential evolution (DE) [220], or particle swarm

optimization (PSO) [118] over the last years. All surrogate-assisted algorithms must find a reason-

able trade-off between exploiting the knowledge of the surrogate and exploring the search space. On

the one hand, researchers have explored methods adding a surrogate with lighter influence on the

original algorithm, for instance, using surrogate-based pre-selection in evolutionary strategy [221]

or a predictor for the individual replacement in DE [109]. On the other hand, an existing algorithm’s

behavior can be entirely biased by a surrogate by guiding the search more significantly. A global

and local surrogate have been incorporated into PSO to solve expensive large-scale optimization

problems [111] or into DE for expensive constrained optimization problems [222]. The existence

of numerous variants of surrogate-assisted algorithms indicates that many different ways of incor-

porating surrogates into an optimization method exist, but also that no best practice procedure has

been established yet [38].
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Figure 4.1: Robustly adding surrogate-assistance to population-based algorithms (illustration in-
spired by [1]).

The need for more generalizable concepts in surrogate-assisted optimization has been rec-

ognized, and frameworks aiming to solve a broad category of optimization problems have been

proposed [83, 223]. These frameworks provide a generic method for solving unconstrained and con-

strained, single- and multi-objective optimization problems using the fit-define-optimize strategy.

Despite these frameworks being applicable for numerous optimization problems, their design is

rather challenging to incorporate and apply research conducted on computationally more inexpen-

sive problems. Thus, a framework generalizing different algorithms is desired. In this chapter, we

propose a novel surrogate-assisted framework that enables the ability to add surrogate assistance to

population-based algorithms. Whereas most other surrogate-assisted algorithms aim to incorporate

surrogates into specialized algorithms, the goal of this study is to provide a scheme to add surrogate

assistance to a whole algorithm class (see Figure 4.1). Even though specialized surrogate-assisted

algorithms are likely to outperform a generic concept on a specific problem type, the merit of

this study is its broad applicability to different algorithms being proposed in literature. Because

of the variety of existing algorithms for all kinds of problems, our framework is also generalized

to numerous problem classes, such as unconstrained or constrained and single or multi-objective

problems. The main contributions of this chapter can be summarized as follows:

(i) We provide a categorization of existing surrogate-assisted algorithms regarding their sur-

rogate usage. We distinguish methods regarding their surrogate’s impact and importance
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during optimization and identify what has had less attention in the past.

(ii) We propose a framework that uses an existing population-based algorithm’s search pattern

and improves the convergence behavior incorporating surrogate assistance. In contrast to

existing surrogate-assisted methods, we are using the entire search pattern of the search of

an algorithm on the surrogate and not only using final solutions. This allows transferring

features of existing algorithms to expensive optimization problems.

(iii) The exploitation of the surrogate and the search space exploration is addressed using a

probabilistic tournament selection based on points suggested by the algorithm. The surrogate

prediction error is incorporated into the tournament selection and reliably balances the

exploitation-exploration trade-off based on the surrogate’s accuracy.

(iv) Our proposed method has truly surrogate-assisted characteristics. The surrogate guides the

search depending on its accuracy and can have more or less impact on the baseline algorithm.

Moreover, the maximum amount of impact can be regulated by setting a hyperparameter. In

an extreme case, if the surrogate turns out to be a disadvantage during the search, it might

even be disabled temporarily, and the method falls back to the default algorithm.

4.2 Background

In this section, the short overview of existing methods in the previous section will be enriched with

details, and existing surrogate-assisted algorithms will be categorized regarding their surrogate

incorporation.

Existing surrogate-assisted methods can be roughly put into one of the following categories

based on the surrogate’s involvement: aided, customized, dependent, or once (see Figure 4.2).

The latter describes the early development of optimization using the approximation model, fitted

exactly once during optimization and never updated (once). Algorithms that perform an update

of the surrogate can mostly depend on its predictions (dependent) or use it as an assistant in an

existing method to improve the convergence behavior (aided, customized). The surrogate’s role and
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dependency on the algorithm’s design are vital for generalizing and, thus, shall be given special

attention in this study. A thematic overview of these different types of surrogate involvement in an

algorithm is given next.

Especially in the early phase of surrogate-based optimization, the surrogate was fitted only once

and optimized. Thus, the optimization’s outcome entirely depends on the accuracy of the surrogate

model.

The limitation of fitting a surrogate only once has soon been overcome by a more adaptive

approach known as EGO (Efficient Global Optimization) [37]. The surrogate guiding the search is

Kriging [35], which provides predictions and a measure of uncertainty for each point. The predic-

tion and uncertainty together define the so-called acquisition function (or infill criterion), such as

the expected improvement [37] or probability of improvement [92] aiming to balance exploitation

and exploration simultaneously. The optimization of the acquisition function results in an infill

solution, which is first evaluated and then added to the model. The procedure is repeated until a ter-

mination criterion is met. The limitation of finding only a single new solution in each iteration has

been investigated thoroughly, and multi-point EGO approaches have been proposed [96, 99, 100].

Moreover, the concept has been generalized to solve multi-objective optimization problems by

using decomposition [126, 134] or replacing the objective with a performance indicator based met-

ric [130]. The idea has also been extended to handle constraints, which is especially important for

Table 4.1: Categorization regarding the surrogate’s role in an algorithm.

Category Algorithm / Study

Aided MAES [221]
Customized MOEAD-EGO [134], K-RVEA [224],

HSMEA [136], CSEA [64], PAL-
SAPSO [119], CAL-SAPSO [120]

Centered EGO [37], ParEGO [126], SMS-
EGO [130], Max-Min SAEA [56],
SACOBRA [225], SABLA [226],
GS-MOMA [83], GSGA [223],
MISO [227], GOSAC [228]

Just Once [229], [87], [230]
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solving real-world optimization problems [138]. Instead of using acquisition functions to address

the surrogate’s uncertainty, algorithms based on trust regions have been proposed. Inevitably,

updating the trust-region radii becomes vital for the algorithm’s performance [231]. Whereas

original studies were limited to unconstrained single-objective optimization, the surrogate-assisted

trust-region concept has been generalized to constrained and multi-objective optimization [83, 223].

Apart from the approaches discussed above, the direct usage of surrogates in an algorithm has been

explored in various areas, for instance, bi-level optimization [56, 226] or mixed-integer optimiza-

tion [227]. All these approaches have one thing in common – the algorithm has been designed

based on an approximating model and thus has a significant surrogate dependency. Therefore, the

surrogate’s suitability and accuracy are critical for the optimization’s success. Inaccurate surrogate

predictions and error estimations, inevitably occurring in large-scale optimization problems, are

known to be problematic [38].

In contrast to algorithms being design-based on surrogates, researchers have investigated sur-

rogates’ incorporation into existing optimization methods. Such approaches are also known as

surrogate-assisted algorithms, emphasizing the surrogate’s role as an assistant during optimiza-

tion. In our categorization, surrogate-assisted algorithms are split up into two categories. On

the one hand, algorithms being aided by a surrogate where only minor changes of the original

algorithm design are made; on the other hand, surrogate-customized methods where the algorithm

has a significant impact on the algorithm’s design. Because the judgment of impact is subjective,

the transition between both categories is somewhat fluent.

The benefit of surrogate-aided algorithms is that with relatively minor modifications, a surrogate

has been incorporated, and the performance has been improved [104]. One well-known approach is

a pre-selection (or pre-filtering), which uses a surrogate to select a subset of solutions that usually

would be evaluated on the expensive problem [221]. Moreover, instead of changing the behavior in

a generation, surrogates have also been used across generations by switching between the expensive

evaluation and surrogate predictions entirely for some iterations [102, 105]. Another example for

a surrogate-influenced algorithm is modifying a memetic algorithm (genetic algorithm with local
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search) by executing an evaluation-intensive local search on the surrogate [51].

Apart from surrogate-assisted methods with relatively minor modifications of existing al-

gorithms, substantial customization based on well-known algorithms has been proposed by re-

searchers. This has resulted in surrogate-assisted variants of well-known algorithms, such as lqC-

MAES [232] derived from CMAES [112], KRVEA [224] and HSMEA [136] based on RVEA [125],

MOEAD-EGO [134] as an improvement of MOEAD [11], or CAL-PSO [120] based on PSO [118],

to name a few. Each surrogate-assisted variant is in principle based on an algorithm originally

developed for computationally more inexpensive optimization problems but customizes the default

behavior, for instance, by one or multiple local or global surrogates, implementing a sophisticated

selection after surrogate-based optimization.

The increasing number of surrogate-assisted algorithms shows the importance and relevance

of optimizing computationally expensive functions in practice. Indisputably, approaches and ideas

directly designed for and dependent on one or multiple surrogates have their legitimacy but are rather

difficult to use for newly proposed algorithms. The increasing number of surrogate-customized

algorithms indicates the need for a best practice procedure and more generalizable methods. Thus,

this study aims to investigate a surrogate-aided framework of algorithms applicable to a broad

category of optimization methods.

4.3 Interfacing Metaheuristics

One of the major challenges when proposing a generalized optimization framework is the number

and strictness of assumptions being made. On the one hand, too many assumptions restrict the

applicability; on the other hand, too few assumptions limit the usage of existing elements in al-

gorithms. In this study, we target any type of population-based algorithm with two phases in an

iteration: the process of generating new solutions to be evaluated (infill) and a method processing

evaluated infill solutions (advance). With these two methods, running an algorithm can be sum-

marized by the pseudo-code shown in Algorithm 4.1. Until the algorithm Φ has been terminated,

the infill method returns a set of new designs 𝑋 to be evaluated. After obtaining the objective 𝐹
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Algorithm 4.1: Infill-And-Advance Interface
Input : Algorithm Φ

1 while Φ has not terminated do
2 𝑋 ← Φ.infill()
3 𝐹, 𝐺 ← evaluate(𝑋)
4 Φ.advance(𝑋, 𝐹, 𝐺)
5 end

and constraint 𝐺 values for design, the algorithm is advanced by providing the evaluated solutions

{𝑋 , 𝐹, 𝐺}. By looking at this interface, we further make two (weak) assumptions. First, we do

not assume that 𝑋 needs to be identical with the suggested designs from infill (Line 2 and 4), but

can also be modified. Second, the infill method is non-deterministic, resulting in different designs

𝑋 whenever called. Both assumptions can be considered weak because most population-based

algorithms already fulfill them. So, how can existing optimization methods be described into

infill and advance phases? Genetic algorithms (GAs) generate new solutions using evolutionary

recombination-mutation operators and then process them using an environmental survival selec-

tion [1] operator; PSO methods create new solutions based on a particles’ current velocity, personal

best, and global best, and process the solutions using a replacement strategy [118]; CMAES sam-

ples new solutions from a normal distribution, which is then updated in each iteration [112]. Shown

by well-known state-of-the-art algorithms following or being suitable to be implemented in this

optimization method design pattern, this seems to be a reasonable assumption to be made for a

generic framework. Moreover, it is worth noting that some researchers and practitioners also refer

to the pattern as ask-and-tell interface.

However, how should this interface be utilized, and what role can surrogates play in improving

the algorithm’s performance? Precisely this is the subject of this work. Nevertheless, before

moving on to the proposed framework, some more specifications of the surrogate usage are to be

defined. First, the surrogate shall only be used as an assistant (in contrast to other methods where

everything is developed centered around the surrogate). Second, the proposed method should be

adaptive, allowing to decrease and increase the impact of surrogate usage and, if desired, even

falling back to the original pseudo-code shown in Algorithm 4.1. Third, the surrogate prediction
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error needs to be addressed to ensure both exploitation and exploration. Altogether, the design

goals are formulated to make the optimization framework and surrogate incorporation flexible.

4.4 Probabilistic Surrogate-Assisted Framework (PSAF)

In the following, we propose probabilistic surrogate-assisted framework (PSAF), a framework for

solving computationally expensive single-objective optimization problems.

4.4.1 Methodology

In contrast to most existing surrogate-assisted algorithms, PSAF uses not only the final solution(s)

obtained by optimizing the surrogate but the whole search pattern. By making use of the search

pattern, the exploration-exploitation balance is found by taking the surrogate’s accuracy into ac-

count. To allow even more flexible exploitation of the surrogate, we propose two phases. First,

derive a solution set that is influenced by the surrogate, and second, introduce surrogate bias by

optimizing the surrogate for a number of iterations. Both procedures are important to incorporate

surrogates into existing methods effectively.

The overall outline of the algorithm is shown in Algorithm 4.2. The PSAF concept requires a

baseline algorithm Φ which implements two methods – infill() and advance(X,F). Moreover,

three hyper-parameters, 𝛼, 𝛽, and 𝜌(max) are passed to balance the surrogate’s influence on the

baseline algorithm. First, the design of experiments 𝑋(doe) are generated in a space-filling manner

and evaluated 𝐹(doe) using the time-consuming evaluation function (Line 1). An iterative procedure

introducing surrogate bias to the baseline algorithm continues until the user-defined termination

criterion is met. Each iteration begins with asking the baseline algorithm for new infill solutions.

All steps from there on until the evaluation of 𝑋 and the advancement of the algorithm (Line 29

and 30) introduce surrogate bias. The surrogate bias consists of two phases: the 𝛼-phase with

a light influence using a tournament selection based on surrogate predictions (Line 7 to 13); and

the 𝛽-phase simulating the algorithm for a number of generations on the surrogate and accepting

solutions with the probability 𝜌 derived from the surrogate’s accuracy (Line 14 to 28).
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Algorithm 4.2: PSAF: A Probabilistic Surrogate-Assisted Framework
Input : Algorithm Φ with infill() and advance(X, F), Surrogate Tournament Pressure 𝛼 (≥ 1),

Number of Simulated Iterations 𝛽 (≥ 0), Maximum Surrogate-Bias 𝜌 (max) (≥ 0.0)
/* Sample Design of Experiments (DOE) */

1 𝑋(doe) ← doe(); 𝐹(doe) ← evaluate(𝑋(doe))
2 Φ.advance(𝑋(doe), 𝐹(doe))
3 while not terminated do

/* Default infill solutions from baseline algorithm */
4 𝑋 ← Φ.infill()

/* Fit a surrogate and predict values for infills */

5 𝑆 ← fit(𝑋(doe), 𝐹(doe))
6 𝐹̂ ← 𝑆.predict(𝑋)

/* Surrogate-assisted Tournament Pressure (𝛼) */
7 foreach 𝑘 ← 2 to 𝛼 do
8 𝑋𝛼𝑘 ← Φ.infill()

9 𝐹̂𝛼𝑘 ← 𝑆.predict(𝑋𝛼𝑘 )
10 foreach 𝑗 ← 1 to size( 𝐹𝛼𝑘 ) do
11 if 𝐹̂𝛼𝑘

𝑗
< 𝐹̂𝑗 then 𝑋 𝑗 ← 𝑋

𝛼𝑘

𝑗
; 𝐹̂𝑗 ← 𝐹̂

𝛼𝑘

𝑗
;

12 end
13 end

/* Bias by Continuing the Algorithm Φ′ on Surrogate (𝛽) */
14 Φ′← copy(Φ)
15 𝑋𝛽 ← 𝑋; 𝐹̂𝛽 ← 𝐹̂

16 foreach 𝑘 ← 1 to 𝛽 do
17 𝑋𝛽𝑘 ← 𝐴′.infill()

18 𝐹̂𝛽𝑘 ← 𝑆.predict(𝑋𝛽𝑘 )
19 foreach 𝑗 ← 1 to size( 𝐹̂𝛽𝑘 ) do
20 𝑖 ← closest(𝑋𝛽𝑘

𝑗
, 𝑋𝛽)

21 if 𝐹̂𝛽𝑘

𝑗
< 𝐹̂

𝛽

𝑖
then 𝑋

𝛽

𝑖
← 𝑋

𝛽𝑘

𝑗
; 𝐹̂𝛽

𝑖
← 𝐹̂

𝛽𝑘

𝑗
;

22 end
23 Φ′.advance(𝑋𝛽𝑘 , 𝐹̂𝛽𝑘 )
24 end
25 𝜌 ← min(estm_surr_bias(S), 𝜌 (max) )
26 foreach 𝑗 ← 1 to size( 𝑋𝛽) do
27 if random() < 𝜌 then 𝑋 𝑗 ← 𝑋

𝛽

𝑗
;

28 end
/* Next iteration of the overall algorithm */

29 𝐹 ← evaluate(𝑋)
30 𝐴.advance(𝑋, 𝐹)
31 𝑋(doe) ← 𝑋(doe) ∪ 𝑋
32 𝐹(doe) ← 𝐹(doe) ∪ 𝐹
33 end

54



4.4.1.1 Influence of Surrogate through Tournament Selection Pressure (𝛼)

A well-known concept in evolutionary computation to introduce a bias toward more promising

solutions is tournament selection. An individual from the population has to win a tournament to

contribute to the mating process. The number of competitors (𝛼) balances how greedy the selection

procedure will be. On the one hand, a larger value of 𝛼 allows only elitist solutions to participate

in mating, while a smaller value introduces less selection pressure. For genetic algorithms, the

most frequently used tournament mode is the binary tournament (𝛼 = 2), which compares a pair

of solutions regarding one or multiple metrics. A standard binary tournament implementation for

constrained single-objective optimization declares the less infeasible solution as the winner if one

or both solutions are infeasible or otherwise the solution with the smaller function value.

In the context of surrogate assistance, the tournament selection introduces surrogate bias during

the generation of new infill solutions. Whereas in genetic algorithms, evaluated solutions (using

ESE) compete with each other during mating selection, in PSAF solutions evaluated on the surrogate

(ASE) are compared. Figuratively, the surrogate serves as a referee in a tournament by providing

predictions before the evaluation. In Figure 4.3, surrogate-assisted tournament selection with three

competitors (𝛼 = 3) for four infill solutions is shown. Initially, the algorithm’s infill function

has been called three times to generate 𝑋𝛼1 , 𝑋𝛼2 , and 𝑋𝛼3 . Then, a tournament takes place where

the 𝑖-th solutions of the 𝑗-th infill solution set 𝑋𝛼 𝑗

𝑖
compete with each other. For instance, for the

first tournament the winner of 𝑋𝛼1
1 , 𝑋𝛼1

2 , and 𝑋𝛼1
3 has to be declared. As a comparison function, the

surrogate’s approximation function 𝐹̂𝛼 𝑗

𝑖
is used. In general, setting 𝛼 = 1 disables the tournament

selection and serves as a fallback. By involving the surrogate in the tournament selection (𝛼 > 1),

the infill solutions 𝑋 get a smaller or larger influence based on the number of competitors.

4.4.1.2 Continue Optimization on Surrogate (𝛽)

While the tournament is an effective concept to incorporate the surrogate’s approximation, it is

limited by looking only a single iteration into the future. To further increase the surrogate’s impact,

the baseline algorithm is continued to run for 𝛽 more consecutive iterations on the surrogate’s

55



𝜶 = 𝟑

#infills = 4

𝑋#
$!

𝑋"
$!

𝑋!
$!

𝑋%
$!

𝑋#
$"

𝑋"
$"

𝑋!
$"

𝑋%
$"

𝑋#
$#

𝑋"
$#

𝑋!
$#

𝑋%
$#

𝑋"
$!

𝑋!
$!

𝑋#
$"

𝑋%
$"

*

*

*

*

To
ur

na
m

en
t S

el
ec

tio
n 
" 𝐹 #$

&

Winners

𝑋#

𝑋"

𝑋!

𝑋%

Figure 4.3: Tournament selection with 𝛼 competitors to create a surrogate-influenced infill solu-
tions.

approximations. Inevitably, the question of how many iterations are suitable arises and indicates

the importance of tuning 𝛽. Nevertheless, even more critical, how should the algorithm profit

from simulating the algorithm on the surrogate? An inappropriate choice of 𝛽 will cause the

surrogate’s optimum to be repeatedly found and will entirely discard the baseline algorithm’s

default infill procedure. This also causes a diversity loss of infill solutions and does not account for

the surrogate’s approximation error. Thus, we propose a probabilistic surrogate-assisted approach

that balances the surrogate’s impact on the baseline algorithm to address these issues.

The probabilistic procedure is described in Algorithm 4.2 from Line 14 to 28. Because the

iterations are only simulated on the surrogate, the original algorithm object Φ must be copied to

Φ′ to avoid any modifications of the current algorithm’s state (Line 14). Then, the algorithm’s

run (of Φ′) is continued on the surrogate model for 𝛽 iterations, by calling in each iteration 𝑘 the

infillmethod returning 𝑋 𝛽𝑘 and feeding back to the algorithm the approximations 𝐹̂𝛽𝑘 by calling

advance (Line 17, 18, and 23). The goal of these iterations is to introduce more surrogate-bias
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Figure 4.4: Continuation of the algorithm’s run for 𝛽 iteration on the surrogate.

into 𝑋 . Therefore, a surrogate-biased population 𝑋 𝛽 is obtained by initializing 𝑋 𝛽 = 𝑋 and 𝐹̂𝛽 = 𝐹̂

(Line 15) and assigning in each iteration (𝑘) every solution 𝑋 𝛽𝑘
𝑗

to its closest solution 𝑖 in 𝑋 𝛽. The

closest solution is determined based on the smallest (normalized) Euclidean distance in the design

space. The infill 𝑋 𝛽
𝑖

and the corresponding prediction 𝐹̂𝛽
𝑖

is replaced if the newly found solution

performs better considering the surrogate’s prediction. Finally, a biased candidate solution 𝑋
𝛽

𝑗

replaces 𝑋 𝑗 with probability 𝜌 bounded by 𝜌(max) . Clearly, the value of 𝜌 determines the impact of

the 𝛽-phase on the baseline algorithm.

An example with five iterations (𝛽 = 5) and four infill solutions 𝑋1, 𝑋2, 𝑋3, and 𝑋4 is also

illustrated in Figure 4.4. Calling the infill function of the baseline algorithm results in five solution

sets with four solutions each. When running the algorithm, the assignment takes place, and for

instance, 𝑋1 has four solutions being the closest to, and 𝑋4 has six. The assignment of the closest

solution will show cluster-like arrangements and preserve diversity.
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In general, optimizing the surrogate model is a common technique used in surrogate-assisted

algorithms. However, a crucial aspect is addressing the utilization of knowledge from these

iterations. An assignment-based and probabilistic approach keeps the balance between the default

algorithm’s behavior and surrogate bias. The strategy to determine the ”bottleneck“ variable 𝜌 of

the 𝛽-phase is described next.

4.4.1.3 Balancing the Utilization of Surrogate (𝜌)

The number of infill solutions being finally biased by 𝛽 iterations on the surrogate is critical and

balances the whole surrogate’s involvement. In industry projects finding a suitable surrogate can

be rather challenging and is often done manually. Comparing different types of surrogates and

selecting the most suitable one is usually based on a metric that judges a model’s trustworthiness.

A well-known metric to estimate the accuracy is the coefficient of determination (also known as

𝑅2):

𝑅2 = 1 −
∑
𝑖 (𝑦𝑖 − 𝑓𝑖)2∑
𝑖 (𝑦𝑖 − 𝑦̄)2

= 1 − MSE(𝑦, 𝑓 )
MSE(𝑦, 𝑓 𝑦̄)

, (4.1)

where 𝑦𝑖 represents the output and 𝑓𝑖 the prediction of the 𝑖-th value, and 𝑦̄ the arithmetic mean of

all output values. The denominator
∑
𝑖 (𝑦𝑖 − 𝑦̄)2 = MSE(𝑦, 𝑓 𝑦̄) represents the Mean Squared Error

(MSE) of a surrogate 𝑓 𝑦̄ always predicting the average of all output values. This error serves as

the normalization constant for coefficient of determination. For a surrogate performing worse than

𝑓 𝑦̄, the right-hand side of the equation results in a value greater than 1 and, thus, 𝑅2 becomes

negative. If the surrogate performs equally good, the value is zero and otherwise positive. The

upper bound of the 𝑅2 metrics is 1, which could theoretically be reached with an MSE of zero.

These characteristics turn out to be very suitable for defining a probability and thus have been the

inspiration for balancing the surrogate bias.

The replacement probability 𝜌 is given by bounding 𝑅2 on the lower end to zero
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𝜌 = max
(
0, 1 − MSE(𝑦, 𝑓 )

MSE(𝑦, 𝑓 𝑏)

)
, (4.2)

where 𝑓 𝑏 represents a baseline predictor. The formula of 𝜌 generalizes the definition of 𝑅2 by

considering an arbitrary baseline predictor 𝑓 𝑏 instead of 𝑓 𝑦̄. Given that 𝑅2 has an upper bound of

one and is at least zero, 𝜌 ∈ (0, 1) holds and thus is a valid probability.

But what does 𝜌 as a metric defining the surrogate bias imply in the context of an algorithm’s

iteration? If the surrogate performs worse than 𝑓 𝑏 (𝜌 = 0), no solution will be replaced. On the

opposite, if the surrogate has no prediction error, all solutions will be surrogate biased. Even more

importantly, if none of these two extreme cases occur, the value of 𝜌, and therefore the surrogate

bias, will be adjusted proportionally to the accuracy of the model normalized by the performance of

𝑓 𝑏. In our implementation, we chose a 𝑘-nearest neighbor model (𝑘 = 𝑛 + 1 where 𝑛 represents the

number of variables) as a baseline predictor 𝑓 𝑏 and average 𝜌 over the last five iterations (sliding

window). For estimating the model’s accuracy, we use all data points observed until the last

generation as training and newly evaluated infill solutions as a validation set. In the initial iteration,

where only the design of experiments and no infill solutions exist, a 𝑘-fold cross-validation is

performed. Our experiments have shown that the surrogate prediction error assessment is essential

and, thus, directly incorporating it into the algorithm design recommended.

4.4.1.4 Surrogate Management

The algorithm’s outline has already shown that the surrogate model has to be fitted through data

points and is used as a predictor for new infill solutions. In general, all matters related to fitting

or updating a surrogate are referred to as surrogate management. It is noteworthy that in practice,

not only single but multiple surrogates are recommended to provide a more robust model with less

approximation error. With multiple surrogates, we refer not only to the type of surrogate but also

concrete hyper-parameters. In our implementation, in total 15 surrogates, consisting of the model

types RBF [34] and Kriging [35], are validated. The hyper-parameters instantiate models with

different mean functions, kernel, and noise. Finally, the model with the highest 𝜌 value is chosen.
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On the one hand, an increasing number of points from optimization increase the time spent for

surrogate management and, on the other hand, can lead to precision issues. The precision issues are

caused by solutions by very close to each other in the design space. Thus, we employ an 𝜖-clearing

approach, which always selects the solution with the smallest function value and then clears all

solutions with less than 𝜖 distance to it (𝜖 = 0.005). We reduce the overall amount of points by

only considering the 200 best solutions from the 𝜖-cleared solution set.

4.4.2 Experimental Results

This study focuses on computationally expensive functions by limiting the evaluation budget for

test problems. This is a commonly used principle in surrogate-assisted research, especially for

more general approaches that need to be tested on several optimization problems. In this study, we

have limited the function evaluations to 200-300 and considered problems with up to 10 variables.

For comparison, we use well-known test problems, such as Sphere, Ackley, Rosenbrock, and others

from the single-objective BBOB test suite [233]. To demonstrate the generalizability of PSAF,

we (i) conduct an experiment focusing on the most suitable hyper-parameter combination, (ii)

investigate the impact of dynamically determining the surrogate-bias by 𝜌 and (iii), lastly, compare

the proposed framework of surrogate-assisted algorithms with other recently proposed methods for

computationally expensive problems.

4.4.2.1 What are suitable values for (𝛼, 𝛽 and 𝜌)?

In our first experiment, 𝜌 is kept fixed and not updated. This shall give insights if 𝜌 is a problem-

dependent variable and, in fact, benefits from being updated based on the surrogate’s prediction

error. Moreover, the impact of 𝛼 and 𝛽 on an algorithm’s performance shall be of interest.

For this hyper-parameter study, we select CMA-ES [112] as a baseline algorithm. We normalize

each variable between zero and one to avoid any scaling irregularities and initialize the algorithm

with a standard deviation of𝜎 = 0.15. The algorithm’s initial starting point is determined by the best

solution found by generating 20 points using Latin Hypercube Sampling [234]. We employ grid-
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based optimization by setting the hyper-parameters 𝛼 ∈ (1, 2, 3, 5, 10), 𝛽 ∈ (0, 5, 10, 20, 30, 40, 50)

and 𝜌 ∈ (0.1, 0.2, . . . , 0.9, 1.0) for PSAF-CMA-ES . Because 𝛽 = 0 makes the value of 𝜌 irrelevant,

there is no need to consider any run with 𝜌 = 0 in addition. Because of the stochastic nature of the

algorithm, we execute each parameter combination 11 times. This resulted in 60,588 runs in total

for all test problems. As a performance criterion, we address the so-called anytime performance

𝑓 (any) of the algorithm and calculate the integral of the convergence curve based on the gap to the

optimum 𝑓 (gap) = 𝑓 − 𝑓 (opt) . Measuring the convergence and not only the final function value

addresses the desire of a surrogate-assisted algorithm converging as quickly as possible with a very

limited function evaluation budget.

In Figure 4.5 results of the hyper-parameter experiment for three exemplary optimization prob-

lems are shown in the form of a parallel coordinate plot [235]. The first three vertical lines represent

the parameters 𝛼, 𝛽, and 𝜌, and the last the performance metric 𝑓 (any) , relative to the baseline al-

gorithm CMA-ES. Thus, the baseline algorithm’s performance (blue) always ends up being 1.0,

and the resulting values indicate the proportional improvement/deterioration. Moreover, the best

performing parameter combination (red) and the second to tenth best (yellow) are highlighted.

(i) One can observe that adding surrogate bias has successfully improved the baseline algorithm’s

performance. PSAF achieved values less than one for almost all parameter combinations and

improved the baseline algorithm’s performance. Moreover, for the most suitable hyper-parameter

values, PSAF showed a remarkable improvement by reducing the convergence integral to 30%.

(ii) One might think that introducing a strong bias in the 𝛽-phase makes the 𝛼-phase irrelevant.

However, results indicate that it is beneficial to employ pre-filtering. The surrogate-influence in the

𝛼 phase is applied no matter how good the surrogate performs but only provides surrogate influence

to a specific extent. Nevertheless, more experiments need to be conducted to determine the most

suitable value for 𝛼 across all problems.

(iii) It becomes evident that for sphere and for rosenbrock rather large values of 𝛽 and 𝜌 and

thus a stronger surrogate-bias are a better choice. This is in contrast to bbob-f07-1 where less

surrogate involvement has turned out to be more effective. Moreover, even for a relatively simple

61



Figure 4.5: Hyper-parameter Analysis for PSAF-CMA-ES with varying 𝛼, 𝛽 and 𝜌. Shown are
the baseline algorithm CMA-ES (blue), the 2nd to 10th best (orange), and the best (red). The
performance 𝑓 (any) is normalized with respect to the baseline algorithm.

10-dimensional quadratic function, the surrogate may not be used 100% (𝜌 = 1.0) of the time.

Analysis has shown this can be attributed to the limited number of points initially. Even for

problems with almost no complexity, a small initial number of designs of experiments (here 20)

requires the baseline algorithm to do some exploration until the surrogate starts to recognize the

characteristics of the function and has a suitable accuracy.

(iv) Besides visualization, we have also performed a ranking-based analysis to find suitable param-

eter combinations. Thus, we have averaged the ranking in percentage across all problems. For

instance, rank 30 out of 307 results in a value of ≈ 0.0977. The average percentage ranks with their

standard deviations are shown in Table 4.2. Results indicate that an 𝛼 value between 5 to 10, a 𝛽

value between 30 to 50 and a value of 𝜌 between 0.3 to 0.5 perform best.
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Table 4.2: Rankings of best performing hyper-parameters.

𝛼 𝛽 𝜌
norm. rank

mean std

10 40 0.4 0.2485 0.1556
5 40 0.5 0.2485 0.1949
10 50 0.3 0.2586 0.1664
10 30 0.3 0.2595 0.1914
5 40 0.3 0.2606 0.1728

4.4.2.2 Is it beneficial to update 𝜌 each iteration?

Our next study addresses the impact of updating 𝜌 in each iteration. The relatively small 𝜌 values

found to perform best might indicate that trusting the surrogate too much slows down the overall

convergence. Thus, the effect of updating 𝜌 in each iteration based on the surrogate’s prediction error

should be investigated (Algorithm 4.2 and Section 4.4.1.3). Considering the insights gained from

the hyper-parameter study, we define an upper bound for 𝜌, determining the maximum influence

of the 𝛽-phase to a reasonable value of 𝜌(max) = 0.7. Moreover, we have used good-performing

parameter combinations from the previous hyper-parameter study. The experiment reveals that an

update of 𝜌 performs significantly better than the best parameter combination from before and is,

thus, recommended (see Table 4.3).

Table 4.3: Ranking with adaptive 𝜌.

𝛼 𝛽 𝜌
norm. rank

mean std

10 40 adaptive 0.1375 0.1831
10 40 0.4 0.2485 0.1556

4.4.2.3 How does PSAF perform compared to other surrogate-based algorithms?

For the remainder of this study, we fix the hyper-parameters to a 𝛼 = 10, 𝛽 = 40 and perform a

dynamic update of 𝜌 with 𝜌(max) = 0.7. So far, our experiments have been based on CMA-ES

to avoid an immense amount of runs for drawing conclusions about suitable hyper-parameters.

However, for a comparison with other methods we have applied PSAF to the following well-known

63



population-based algorithms besides CMA-ES [112]: DE [220], PSO [118] with adaptive 𝑐−1 and

𝑐−2 [236] and a standard genetic algorithm [1]. For all algorithms, the population size and number

of infills solutions (or, depending on the algorithm, called particles or offsprings) have been set to

10. We have used the standard implementations of the algorithms mentioned above available in

pymoo [29]. All other hyperparameters are set to each algorithm’s default settings.

First, we like to confirm that PSAF improves the convergence of the considered baseline

algorithms on various test problems. Figure 4.6 shows the convergence plots (averaged over 11

runs) of a variety of single-objective optimization problems. The PSAF variants are plotted using

straight and the baseline algorithms with dashed lines. The convergence curves demonstrate the

superiority of surrogate-assisted approaches across all test problems except for bbob-f04-1-10d.

We attribute the superiority of PSO to the problem complexity and the fact that no algorithm can

converge with the limited evaluation budget of 300.

Second, the performance compared to other surrogate-based algorithms shall be demonstrated.

As a comparison we have chosen a standard EGO implementation from GPyOpt [237] (with 10

infill points in each iteration), a recently proposed method called 𝜖-shotgun [238] (with a batch

size of 10 and 𝜖 = 0.1), and lqCMAES [232]. First, one can observe that lqCMA-ES, based on a

quadratic model approximation, converges closer to the optimum if a solution near the optimum

is found. Nevertheless, for problems where this is not the case, PSAF variants show superior

performance. Extending PSAF to perform a local search using a quadratic model might show

similar convergence behavior near an optimum. Moreover, EGO and 𝜖-shotgun are outperformed

by almost all PSAF variants except for bbob-f05-1-10d where a solution close to the optimum is

found right away. Comparing algorithms of the PSAF framework with itself does allow to declare

no clear winner. Whereas PSAF-PSO seems to perform well for most problems, PSAF-CMA-ES

converges faster for the problems with only two variables. Altogether, considering an algorithm

with a gap to the optimum of less than 10−6 as converged, at least one PSAF variant was better 50%

(6/12) and equally good 30% (4/12) of the time. This can be considered a remarkable achievement

for a generalizable framework.
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Figure 4.6: Comparison of the average performance of PSAF with the original algorithms and other
surrogate-based algorithms.

4.4.3 Summary of Section 4.4

In this section, we have proposed a framework of generalized probabilistic surrogate-assisted algo-

rithms. The idea is based on improving the convergence of an existing algorithm by incorporating a

surrogate’s knowledge. The concept consists of a surrogate’s influence through a tournament-based

procedure with 𝛼 competitors and a stronger surrogate’s bias by using solutions with probability

𝜌 derived from continuing the optimizing for 𝛽 iterations on the surrogate. Experiments with a
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parametric study on 𝛼, 𝛽, and 𝜌 have shown that the proposed approach effectively improves the

convergence behavior on a variety of problems. While 𝛼 = 10 and 𝛽 = 40 worked the best overall,

we have presented an adaptive procedure of updating 𝜌 depending on the surrogate’s prediction

error inspired by the well-known 𝑅2 metric. PSAF variants of CMA-ES, DE, GA, and PSO have

shown competitive performance compared to other surrogate-based algorithms. Applying PSAF to

other variable types to further demonstrate the approach’s capabilities will be part of future work.

Additionally, the effect of a local search to improve the convergence behavior near the optimum is

worth investigating. Other interesting future studies for PSAF are extensions to handle constraints

and multiple objectives. This will require a suitable baseline algorithm and a modification of 𝜌 esti-

mation based on more than one surrogate. Altogether, the proposed probabilistic surrogate-assisted

concept shall pave the way for new algorithms. PSAF allows making use of existing algorithms’

benefits to solve computationally expensive problems efficiently using a surrogate. Thus, this shall

be an alternative to the widely-used fit-and-optimize method used in EGO and other algorithms.

4.5 Generalized Probabilistic Surrogate-Assisted Framework (GPASF)

Next, PSAF shall be extended to be suitable to handle multiple objectives and constraints. General-

ized probabilistic surrogate-assisted framework (GPSAF) follows the two-phase concept as PSAF.

However, the 𝛼-phase and the 𝛽-phase now have to consider multiple criteria when comparing

solutions.

4.5.1 Methodology

Before describing the responsibilities and modifications of each of the phases, the outline of the

algorithm is discussed (see Algorithm 4.3). Before any surrogate can be fit, a solution archive 𝐴

is initialized by some design of experiments A.X are generated in a space-filling manner. A good

spread of solutions is recommended to allow surrogates to capture the overall fitness landscape as

accurately as possible. A.X is evaluated using exact solution evaluation (ESE) resulting in A.F

and A.G (Line 2). Then, while the number of evaluations is less than the maximum solution
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evaluation budget ESE(max) , infill solutions P.X are generated by calling the non-deterministic

infill method of the baseline algorithm Φ. The default execution of algorithm Φ would immedi-

ately evaluate P.X using ESE and directly feed the solutions back to the algorithm by executing

Φ.advance(P.X, P.F, P.G) (Line 35 and 36). However, instead of doing so, GPSAF modifies

P.X in a way to be influenced and biased by surrogates (Line 6 to 30) and advances the algorithm

in the end of the iteration (Line 35 to 36). After having estimated the surrogate error and fitted

the surrogates for objective and constraint functions, the 𝛼-phase adds surrogate influence to P.X

by replacing solutions being predicted to be better (Line 8 to 14). Thereafter, the 𝛽-phase runs

algorithm Φ for multiple generations (evaluations only on ASE) and assigns each solution to its

closest P.X. For each of the resulting candidate solution pools U[j] assigned P[j] a probabilistic

tournament determines the winning candidate (Line 15 to 30). Afterward, the replacement phase

takes place where either the solution originating from the 𝛼-phase P[j] is kept or replaced with

U[j] from the 𝛽-phase (Line 31 to 34). The solutions set to P.X are evaluated, and the algorithm

Φ is advanced (Line 35 and 36). Finally, the prediction error is updated before starting the next

iteration, and the newly evaluated solutions are added to archive A.

4.5.1.1 Generalized 𝛼 and 𝛽-phase

For single-objective optimization, the 𝛼-phase has already been described (see Section 4.4.1.1).

There, the comparison of the two solutions is based only on one single objective value. For the more

generic version with constraints and objectives, the winner of each solution pool is determined as

follows: if all solutions are infeasible, select the least infeasible solution; otherwise, select a non-

dominated solution (break ties randomly). For both the constraint and objective values, only ASEs

are used. Otherwise, the 𝛼-phase remains the same, including its responsibilities and mechanics.

Analogously to PSAF, GPSAF further increases the surrogate’s impact by looking 𝛽 iterations

into the future through calling infill and advance of the baseline algorithm repetitively. To obtain

the 𝛽-solution for constrained multi-objective problems, we use a so-called probabilistic knockout

tournament (PKT) to select solutions from each cluster with the goal of self-adaptively exploiting
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Algorithm 4.3: GPSAF: Generalized Probabilistic Surrogate-Assisted Framework
Input : Algorithm Φ, Surrogate Tournament Pressure 𝛼 (≥ 1), Number of Simulated Iterations 𝛽 (≥ 0), Replacement Probability

Exponent 𝛾, Maximum Number of Solution Evaluations ESE(max)

/* Sample Design of Experiments (DOE) */
1 A← ∅; P← ∅; Q← ∅; U← ∅; e← ∅
2 A.X← doe(); A.F, A.G← evaluate(A.X)
3 while size(𝐴) < ESE(max) do

/* Infill sols. from baseline algorithm */
4 P.X← Φ.infill()

/* Estimate error - only initially */
5 if e = ∅ then e← estm_error(A.X, A.F, A.G);

/* Surrogates for each obj. and constr. */
6 𝑆 ← fit(A.X, A.F, A.G)
7 P.𝐹̂, P.𝐺̂ ← 𝑆.predict(P.X)

/* Surrogate Influence (𝛼) */
8 foreach 𝑘 ← 2 to 𝛼 do
9 Q.𝑋 ← Φ.infill()

10 Q.𝐹̂, Q.𝐺̂ ← 𝑆.predict(Q.X)
11 foreach 𝑗 ← 1 to size(Q) do
12 if not dominates(P[j], Q[j]) then P[j] = Q[j] ;
13 end
14 end

/* Surrogate Bias (𝛽) */
15 Φ′ ← copy(Φ)
16 𝑈 ← ∅
17 foreach 𝑘 ← 1 to 𝛽 do
18 Q.𝑘 ← 𝑘

19 Q.𝑋 ← Φ′.infill()

20 Q.𝐹̂, Q.𝐺̂ ← 𝑆.predict(Q.X)
21 foreach 𝑗 ← 1 to size(Q) do
22 𝑖 ← closest(P.𝑋, Q[j].𝑋)
23 U[i]← U[i] ∪ Q[j]
24 end
25 Φ′.advance(Q.X, Q.𝐹̂, Q.𝐺̂)
26 end
27 V← list()
28 foreach 𝑗 ← 1 to size(U) do
29 V← V ∪ prob_knockout_tourn(U[j])
30 end

/* Replacement (𝛾) */
31 foreach 𝑗 ← 1 to size(P) do
32 𝜌← repl_prob(U[j],𝑈, 𝛾)
33 if rand() < 𝜌 then P[j]← 𝑉 [ 𝑗 ]) ;
34 end

/* Evaluate on ESE */
35 P.F, P.G← evaluate(P.X)

/* Prepare next iteration of GPSAF */
36 Φ.advance(P.X, P.F, P.G)

37 e← update_error(P.F, P.G, P.𝐹̂, P.𝐺̂)
38 A← A ∪ P
39 end

surrogates. The goal is to use surrogates more when they provide accurate predictions but use them

more carefully when they provide only rough estimations. Necessary for generalization, PKT also

applies to problems with multiple objectives and constraints, often with varying complexities and
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surrogate errors to be considered.

Generally, we define PKT as a subset selection of 𝑘 solutions from a set of solutions 𝐶 by

applying pairwise comparisons under noise as shown in Algorithm 4.4. Initially, the solution set 𝐶

to select from is shuffled to randomize the matches (Line 1). If the current number of participants

|𝐶 (𝑡) | is odd, a random solution is chosen to compete twice (Line 4). Each competition occurs

under noise, based on the current prediction error of the surrogates. The noise is added to each

objective and constraint independently before comparing the solutions. After adding the noise, the

comparison is identical to the subset selection explained in Section 4.5.1.1 (feasibility, dominance,

random tie break) with two competitors (𝛼 = 2). The winner of each round moves on to the next

and is added to 𝐶 (𝑡+1) (Line 8). If too many solutions have been eliminated, randomly choose some

losers from the last round (Line 13). This results in a set of solutions of size 𝑘 being returned as

tournament winners under noise. The design of PKT applies to the most general case of constrained

multi-objective optimization because the selection procedure can be reduced to a comparison of

two solutions.

Back to the cluster-wise selection in the 𝛽-phase where PKT is executed with 𝑘 = 1 to obtain a

winner for each solution set U_j. An example with five iterations (𝛽 = 5) and four infill solutions

𝑋1, 𝑋2, 𝑋3, and 𝑋4 is illustrated in Figure 4.4. Calling the infill and advance function of the baseline

algorithm results in five solution sets (𝛽1 to 𝛽5) with four solutions each. The advancement of

multiple iterations is based on ASEs. In each iteration, all solutions are directly assigned to the

closest 𝑋𝑖 solution from the 𝛼-phase forming the cluster 𝑈𝑖. The cluster search pattern division is

essential to preserve diversity. For each cluster, a winner 𝑉𝑖 is declared by performing the PKT.

For instance, in this example, 𝑋1 has four solutions in 𝑈1 where one from the fourth iteration 𝛽4

is finally selected. At the end of the 𝛽-phase, each cluster 𝑈𝑖 has at most one solution 𝑉𝑖 to be

assigned to (some clusters may stay empty because no solutions are assigned to it).
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Algorithm 4.4: Probabilistic Knockout Tournament (PKT)
Input : Solution Set 𝐶, Prediction errors 𝑒, Number of winners 𝑘

1 𝐶 (1) ← shuffle(𝐶)
2 𝑡 ← 1
3 while |𝐶 (𝑡) | > 𝑘 do
4 if |𝐶 (𝑡) | is odd then 𝐶 (𝑡) ← 𝐶 (𝑡) ∪ rselect(𝐶 (𝑡) , 1);
5 𝐶 (𝑡+1) ← ∅
6 foreach 𝑖 ← 1 to |𝐶 (𝑡) |/2 do
7 𝑤 ← compare_noisy(𝐶 (𝑡)2𝑖 , 𝐶

(𝑡)
2𝑖+1, 𝑒)

8 𝐶 (𝑡+1) ← 𝐶 (𝑡+1) ∪ 𝑤
9 end

10 𝑡 ← 𝑡 + 1
11 end
12 if |𝐶 (𝑡) | < 𝑘 then
13 𝐶 (𝑡) ← 𝐶 (𝑡) ∪ rselect(𝐶 (𝑡−1) \ 𝐶 (𝑡) , |𝐶 (𝑡) | − 𝑘)
14 end
15 return 𝐶 (𝑡)

4.5.1.2 Balancing the Exploration and Exploitation (𝛾)

PSAF has defined the probability 𝜌 for choosing between either keeping the 𝛼-solution or replacing

it with the 𝛽-solution based on the error of the surrogate model. However, now multiple surrogate

models exist, and for instance, the model for the first objective might have almost no prediction

error, but the one for the second objective be highly inaccurate. Thus a different logic has to be

implemented.

GPSAF uses another particularly useful piece of information for this decision: the distribution

of assigned solutions across clusters. The search pattern derived from surrogates with a high-

density area indicates a region of interest. Thus, we propose to set the replacement probability to

𝜌 =

( |𝑈 𝑗 |
max 𝑗 |𝑈 𝑗 |

)𝛾
. (4.3)

The denominator max 𝑗 |𝑈 𝑗 | normalizes the number of assigned points with respect to the points

in the current cluster |𝑈 𝑗 |. The exponent 𝛾 can be used to control the importance of the distribution

and was kept constant at 𝛾 = 0.5. The cluster with the highest density is always chosen from the

𝛽-phase because the nominator and denominator will be equal. This will always be the case for
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baseline algorithms returning only one infill solution where stronger surrogate bias is generally

desirable. After the replacement, the solutions will finally be sent to the time-consuming solution

evaluation.

4.5.1.3 Surrogate Management

Besides using surrogates in an algorithmic framework, more needs to be said about the models

themselves. First, one should note that only the predictions of data points need to be provided by

surrogates and no additional error estimation (the error estimates are kept track of by our method

directly). Not requiring an error estimation does not limit the models to a specific type, unlike other

surrogate-based algorithms. Second, each of the objective and constraint functions is modeled

independently, known as M1 in the surrogate usage taxonomy in [23]. Even though modeling all

functions increases the algorithmic overhead, it prevents larger prediction errors through complexity

aggregations of multiple functions. Third, a generic framework for optimizing computationally

expensive functions requires a generic surrogate model implementation. Clearly, some model

types are more suitable for some problems than others. Thus, to provide a more robust framework,

each function is approximated with a set of surrogates, and the best one is chosen to be used. The

surrogate types in this section consist of the model types RBF [34] and Kriging [35], both initialized

with different hyper-parameters (normalization, regressions, kernel). A pre-normalization step

referred to as PLOG [225] is attempted and selected, if well-performing, for constraint functions.

Two metrics assess the performance of a model: First, Kendall Tau Distance [239] comparing

the ranking of solutions being less sensitive to outliers with a large prediction error; second, the

Maximum Absolute Error (MAE) to break any ties. The value of MAE is also used as an error

approximation when noise is added to individuals. The error estimation in the first iteration is

based on k-fold cross-validation (𝑘 = 5) to get a rough estimate of how well a surrogate can capture

the function type. The performance metrics are updated in each iteration by fitting a surrogate

based on all solutions seen so far (training set) and assessing their error on the newly evaluated

solutions (test set). Finally, a moving average of five iterations to avoid a smooth and more robust
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estimation provides the data for selecting the best surrogate and estimating the prediction error for

each objective and constraint.

4.5.2 Experimental Results

In this section, we present the performance of GPSAF applied to various population-based algo-

rithms solving unconstrained and constrained, single- and multi-objective optimization problems.

Proposing an optimization framework requires comparing a group of algorithms, which is not a

trivial task itself. Benchmarking is further complicated when non-deterministic algorithms are

compared, in which case not only a single but multiple runs need to be considered.

For a fair comparison of optimization methods across test problems and to measure the impact

of GPSAF on a baseline algorithm, we use the following ranking-based procedure:

i. Statistical Domination: After collecting the data for each test problem and algorithm

(A ∈ Ω) from multiple runs, we perform a pairwise comparison of performance indicators

(PI) between all algorithms using the Wilcoxon Rank Sum Test (𝛼 = 0.05). The null-

hypothesis 𝐻0 is that no significant difference exists, whereas the alternative hypothesis is

that the performance indicator of the first algorithm (PI(A)) is smaller than the one of the

second (PI(B)). For single-objective optimization, the PI function consists of the gap to

the optimum (if known) or the best function value found. For multi-objective optimization

IGD [240] (if optimum is known) or Hypervolume [241] is used. The dominance function

between two algorithms, A and B , is then defined by

𝜙(A,B) = RANKSUM(PI(B), PI(A), alt=’less’), (4.4)

where the function 𝜙(A,B) returns zero if the null hypothesis is accepted or a one if it is

rejected.
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ii. Number of Dominations: The performance 𝑃(A) of algorithm A is then determined by

the number of methods that are dominating it:

𝑃(A) =
∑︁
B∈Ω
A≠B

𝜙(B,A). (4.5)

This results in a domination number 𝑃(A) for each method, which is zero if no other

algorithm does not outperform it.

iii. Ranking: Finally, we sort the methods by their 𝑃(A). This may result in a partial ordering

with multiple algorithms with the same 𝑃(A) values. In order to keep the overall sum of

ranks equal, we assign their average ranks in case of ties. For instance, let us assume five

optimizations methods A, B, C, D, and E: algorithm A outperforms all others; between the

performances of B, C, and D, no significant difference exists; E performs the worst. In this

case, method A gets rank 1, the group of methods B, C, and D, rank (2 + 3 + 4)/3 = 9/3 = 3,

and E ranks 5. Averaging the ranks for ties penalizes an optimization method for being

dominated by the same amount of algorithms as others and keeps the rank sum for each

problem the same.

This conveniently provides a ranking for each test problem. To evaluate the performance of a

method on a test suite, we finally average the ranks across problems. If an algorithm fails to solve a

specific problem for all runs, it gets the maximum rank and becomes the worst performing algorithm.

Otherwise, all failing runs will be ignored (this has only rarely happened for a competitor algorithm

to compare with). The ranks are used to compare the performances of methods in this manuscript,

the values of the performance indicators for the methods on all test problems can be found in the

Supplementary Document. Each algorithm has been executed 11 times on each test problem. If not

explicitly mentioned in the specific experiment, the total number of solution evaluations has been

set to ESE(max) = 300. For some simpler constrained problems, even fewer evaluations have been

used. A relatively limited evaluation budget also means that more complicated problems might

not be solved (near) optimally. However, a comparison of how well an algorithm has performed
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imitates the situation researchers face in practice. If the number of variables is not fixed, the

number of variables is fixed to 10. The results are presented in ranking tables where the overall

best performing algorithm(s) are highlighted with a gray cell background for each ranking-based

comparison for a test problem. The best-performing ones in a group are shown in bold.

Moreover, some more details about our implementation shall be said. For the baseline al-

gorithms, we use implementations of population-based algorithms available in the well-known

multi-objective optimization framework pymoo1 [29] developed in Python. For all methods, the

default parameters provided by the framework are kept unmodified, except the population size

(=20) and the number of offsprings (=10) to create a more greedy implementation of the methods.

The surrogate implementation of Kriging is based on a Python clone2 of DACEFit [55] origi-

nally implemented in Matlab. The RBF models are a re-implementation based on [225]. The

hyper-parameters of GPSAF were determined through numerous empirical experiments during the

algorithm development. A reasonable and well-performing configuration given by 𝛼 = 30, 𝛽 = 5,

and 𝛾 = 0.5 is fixed throughout all experiments.

4.5.2.1 (Unconstrained) Single-Objective Optimization

The first experiment investigates the capabilities of GPSAF for improving the performance of existing

algorithms on unconstrained single-objective problems. We use the BBOB test problems (24 functions in

total) available in the COCO-platform [233] which is a widely used test suite with a variety of more and less

complex problems. Four well-known population-based optimization methods, DE [107], GA [1], PSO [118],

and CMAES [112] serve as baseline optimization algorithms and their GPSAF variants provide a surrogate-

assisted version. The results are compared with four other surrogate-assisted algorithms, SACOSO [222],

SACC-EAM-II [242], SADESammon [243], SAMSO [244] available in the PlatEMO [245] framework.

The rankings from the experiment are shown in Table 4.4. First, one can note that GPSAF outperforms

the other four existing surrogate-assisted algorithms. One possible reason for the significant difference

could be their development for a different type of test suite (for instance, problems with a larger number of

1http://pymoo.org (Version 0.5.0)
2https://pypi.org/project/pydacefit/
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Table 4.4: A comparison of DE, GA, PSO, and CMAES with their GPSAF variants on unconstrained
single-objective problems with four other surrogate-assisted algorithms. The rank of the best
performing algorithm in each group is shown in bold. The overall best performing algorithm for
each problem is highlighted with a gray shade.

Problem DE GPSAF-
DE GA GPSAF-

GA PSO GPSAF-
PSO CMAES GPSAF-

CMAES
SA

COSO

SACC-
EAM-

II

SADE
Sammon

SA
MSO

f01 11.0 4.0 7.5 2.5 5.5 1.0 5.5 2.5 7.5 9.5 12.0 9.5
f02 10.0 4.0 4.0 1.0 4.0 2.0 7.5 6.0 12.0 7.5 10.0 10.0
f03 8.5 3.0 5.0 1.5 7.0 1.5 8.5 5.0 10.0 5.0 11.5 11.5
f04 8.5 4.0 4.0 2.0 4.0 1.0 6.5 6.5 10.0 8.5 11.0 12.0
f05 5.5 1.0 7.5 3.0 5.5 2.0 7.5 4.0 11.0 9.5 9.5 12.0
f06 7.0 7.0 2.0 2.0 4.5 4.5 9.0 2.0 10.0 7.0 11.0 12.0
f07 9.5 5.5 5.5 2.0 5.5 2.0 5.5 2.0 9.5 8.0 11.0 12.0
f08 8.0 6.0 8.0 2.0 5.0 2.0 4.0 2.0 10.0 8.0 11.0 12.0
f09 10.0 3.5 8.0 3.5 3.5 3.5 7.0 3.5 3.5 9.0 11.5 11.5
f10 10.5 5.5 5.5 1.5 5.5 1.5 5.5 5.5 10.5 5.5 10.5 10.5
f11 10.5 3.5 7.0 1.5 7.0 3.5 7.0 7.0 10.5 1.5 12.0 7.0
f12 2.5 6.5 6.5 6.5 2.5 2.5 2.5 6.5 10.0 9.0 11.0 12.0
f13 7.5 5.0 7.5 2.5 5.0 1.0 5.0 2.5 10.0 9.0 11.0 12.0
f14 9.5 5.0 7.5 2.0 5.0 2.0 5.0 2.0 9.5 7.5 11.0 12.0
f15 10.0 3.5 6.5 1.5 6.5 1.5 6.5 3.5 9.0 6.5 11.0 12.0
f16 9.0 6.0 6.0 2.0 9.0 2.0 4.0 2.0 11.5 6.0 11.5 9.0
f17 9.5 5.0 7.0 3.0 7.0 3.0 3.0 1.0 11.0 7.0 9.5 12.0
f18 9.5 4.0 6.0 2.0 6.0 2.0 6.0 2.0 9.5 8.0 11.0 12.0
f19 11.0 5.0 10.0 1.0 5.0 5.0 8.5 5.0 5.0 2.0 8.5 12.0
f20 9.5 2.5 7.0 2.5 2.5 2.5 5.5 5.5 9.5 8.0 11.5 11.5
f21 8.5 7.0 3.5 3.5 3.5 3.5 3.5 3.5 10.0 8.5 11.5 11.5
f22 9.5 6.0 6.0 2.5 6.0 2.5 2.5 2.5 9.5 8.0 11.0 12.0
f23 10.0 5.5 5.5 1.5 5.5 5.5 11.0 12.0 9.0 1.5 5.5 5.5
f24 10.0 2.0 8.0 2.0 4.0 2.0 8.0 5.5 8.0 5.5 11.0 12.0

Total 8.958 4.583 6.292 2.292 5.188 2.479 6.021 4.146 9.417 6.896 10.667 11.062

variables). In this test suite, some problems are rather complicated and exploiting the surrogate too much

will cause the optimizer to be easily trapped in local optima. Also, we contribute the efficiency of GPSAF

to the significant effort for finding the most suitable surrogate. The order of relative rank improvement is

given by GA (6.292/2.292 = 2.7452), PSO (2.0927), DE (1.9546), and for CMAES (1.4522). Besides

GPSAF-GA having the biggest relative rank improvement, it also is the overall best performing algorithm

in this experiment, closely followed by GPSAF-CMAES. Altogether, a significant and quite remarkable

improvement is achieved by applying GPSAF for (unconstrained) single-objective optimization.

4.5.2.2 Constrained Single-Objective Optimization

Rarely are optimization problems unconstrained in practice. Thus, especially for surrogate-assisted methods

aiming to solve computationally expensive real-world problems, the capability of dealing with constraints

is essential. The so-called G-problems or G-function benchmark [246, 247] was proposed to develop opti-
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Table 4.5: A comparison of DE, GA, PSO, and ISRES with their GPSAF variants on constrained
single-objective problems with SACOBRA – the current state-of-art algorithms for constrained
optimization.

Problem ESE(max) DE GPSAF-
DE GA GPSAF-

GA PSO GPSAF-
PSO

GPSAF-
ISRES SACOBRA

G1 75 5.5 3.5 7.5 3.5 7.5 5.5 1.0 2.0
G2 300 3.5 7.0 1.0 3.5 6.0 3.5 8.0 3.5
G4 75 6.5 3.5 6.5 5.0 8.0 3.5 1.5 1.5
G6 75 7.0 4.0 7.0 4.0 7.0 4.0 1.5 1.5
G7 75 7.0 4.0 7.0 4.0 7.0 4.0 2.0 1.0
G8 100 7.0 4.5 7.0 4.5 7.0 3.0 1.0 2.0
G9 300 7.0 4.5 7.0 2.5 4.5 2.5 7.0 1.0
G10 300 8.0 3.5 6.5 3.5 6.5 3.5 3.5 1.0
G11 300 7.0 2.5 5.5 2.5 5.5 2.5 2.5 8.0
G12 300 6.0 4.5 8.0 4.5 7.0 3.0 1.5 1.5
G16 300 5.5 2.5 5.5 8.0 7.0 2.5 2.5 2.5
G18 300 7.0 3.5 7.0 3.5 7.0 3.5 3.5 1.0
G19 300 7.5 2.0 6.0 2.0 7.5 2.0 5.0 4.0
G24 300 7.5 4.5 7.5 4.5 6.0 2.0 2.0 2.0

Total 6.571 3.857 6.357 3.964 6.679 3.214 3.036 2.321

mization algorithms dealing with different kinds of constraints regarding the type (equality and inequality),

amount, complexity, and result in feasible and infeasible search space. The original 13 test functions were

extended in a CEC competition in 2006 [248] to 24 constrained single-objective test problems [249]. In

this study, G-problems with only inequality constraints (and no equality constraints) are used. Besides the

GPSAF variants of DE and GA, improved stochastic ranking evolutionary strategy (ISRES) [250] is applied

to GSPAF. ISRES implements an improved mating strategy using differentials between solutions in contrast

to its predecessor SRES [251]. ISRES follows the well-known 1/7 rule, which means with a population size

of 𝜇 individuals 7 · 𝜇 offsprings are created. For this study, GPSAF creates a steady-state variant of ISRES

by using the proposed probabilistic knockout tournament to choose one out of the 𝜆 solutions. This ensures

a fair comparison with SACOBRA [225] which also evaluates one solution per iteration. To the best of our

knowledge, SACOBRA implemented in R [252] is currently the best-performing algorithm on the G problem

suite.

The constrained single-objective results are presented in Table 4.5. First, it is apparent that the GPSAF

variants improve the baseline algorithms. Only for G2, the genetic algorithm outperforms its and other

surrogate-assisted variants, which we contribute to the very restricted feasible search space (also, this has

shown to be a difficult problem for surrogate-assisted algorithms in [225]). Second, GPSAF-ISRES shows
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the best results out of all GPSAF variants. This indicates that it is beneficial if the baseline method has

been proposed with a specific problem class in mind. Even though DE, GA, and PSO can handle constraints

(for instance, naively using the parameter-less approach), there are known to not perform particularly well

on complex constrained functions without any modifications. In contrast, ISRES has been tested on the

G problems in the original study and proven to be effective. Furthermore, adding surrogate assistance to

it has further improved the results. Third, GPSAF-ISRES shows competitive performance to the state-of-

the-art algorithm SACOBRA. In this experiment, out of all 14 test problems: GPSAF variants were able

to outperform SACOBRA four times and a baseline algorithm (GA) one time; five times the performance

of at least one GPSAF variant was similar; four times SACOBRA has shown significantly better results.

Altogether, one can say GPSAF has created surrogate-assisted methods competing with the state-of-the-art

method for constrained single-objective problems.

4.5.2.3 (Unconstrained) Multi-Objective Optimization

Many applications have not one but multiple conflicting objectives to optimize. For this reason, this

experiment focuses specifically on multi-objective optimization problems. As a test suite, we choose

ZDT [253], a well-known test suite proposed when multi-objective optimization has gained popularity.

Throughout this experiment, we set the number of variables to 10, except for the high multi-modal problem,

ZDT4, where the number of variables is limited to 5. The WFG [254] test suit provides even more flexibility

by being scalable with respect to the number of objectives. Here, we simply set the objective number to be

two to create another bi-objective test suite. Moreover, the number of variables has been set to 10 where

four of them are positional. The baseline algorithms NSGA-II [10], SMS-EMOA [255], and SPEA2 [256]

are used as baseline algorithms. The results are compared with four other surrogate-assisted algorithms:

AB-SAEA [137], KRVEA [224], ParEGO [126], CSEA [64] available in PlatEMO [245].

The results on the two multi-objective test suites are shown in Table 4.6. First, one can note that

all surrogate-assisted algorithms outperform the ones without. This indicates that surrogate assistance

effectively improves the convergence behavior. Second, GPSAF-NSGA-II performs the best with a rank of

2.893 and shows the best performance, followed by GPSAF-SPEA2, GPSAF-SMS-EMOA, and KRVEA. It

is worth noting that ParEGO is penalized by being terminated for ZDT4 and WFG2, where the surrogate

model was not able to be built.
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Table 4.6: A comparison of NSGA-II, SMS-EMOA, and SPEA2 with their GPSAF variants with
four surrogate-assisted algorithms on bi-objective optimization problems.

Problem NSGA-II GPSAF-
NSGA-II

SMS-
EMOA

GPSAF-
SMS-
EMOA

SPEA2 GPSAF-
SPEA2 AB-SAEA K-RVEA ParEGO CSEA

ZDT1 9.0 2.5 9.0 2.5 9.0 2.5 6.0 5.0 2.5 7.0
ZDT2 9.0 1.5 9.0 6.0 9.0 5.0 3.0 4.0 1.5 7.0
ZDT3 9.0 4.5 9.0 4.5 9.0 4.5 4.5 1.0 2.0 7.0
ZDT4 6.5 2.0 6.5 2.0 6.5 2.0 9.0 6.5 10.0 4.0
ZDT6 7.5 3.0 9.5 6.0 9.5 3.0 5.0 3.0 1.0 7.5
WFG1 9.0 6.0 9.0 6.0 9.0 6.0 4.0 2.0 2.0 2.0
WFG2 7.0 1.5 8.0 9.0 4.5 4.5 4.5 1.5 10.0 4.5
WFG3 8.0 3.5 10.0 3.5 8.0 1.5 5.5 1.5 5.5 8.0
WFG4 6.5 1.5 9.0 5.0 6.5 1.5 3.5 3.5 9.0 9.0
WFG5 8.0 2.5 8.0 4.0 10.0 5.0 6.0 2.5 1.0 8.0
WFG6 9.0 2.0 10.0 6.5 4.5 2.0 2.0 4.5 6.5 8.0
WFG7 5.5 4.0 8.5 2.0 8.5 2.0 5.5 7.0 2.0 10.0
WFG8 7.5 2.5 10.0 5.0 9.0 2.5 2.5 6.0 2.5 7.5
WFG9 7.5 3.0 7.5 3.0 6.0 3.0 3.0 10.0 9.0 3.0
Total 7.786 2.857 8.786 4.643 7.786 3.214 4.571 4.143 4.607 6.607

Table 4.7: A comparison of NSGA-III, SMS-EMOA, and SPEA2 with their GPSAF variants with
four surrogate-assisted algorithms on three-objective optimization problems.

Problem NSGA-III GPSAF-
NSGA-III

SMS-
EMOA

GPSAF-
SMS-
EMOA

SPEA2 GPSAF-
SPEA2 AB-SAEA K-RVEA ParEGO CSEA

DTLZ1 1.5 3.5 1.5 6.5 5.0 8.0 10.0 9.0 6.5 3.5
DTLZ2 8.5 2.0 8.5 2.0 8.5 2.0 6.0 4.0 5.0 8.5
DTLZ3 2.0 5.5 2.0 2.0 5.5 8.0 10.0 9.0 5.5 5.5
DTLZ4 6.5 6.5 9.0 6.5 6.5 3.5 2.0 1.0 10.0 3.5
DTLZ5 6.0 3.0 9.0 1.0 9.0 2.0 6.0 6.0 4.0 9.0
DTLZ6 7.5 5.5 7.5 3.5 9.0 5.5 1.5 1.5 10.0 3.5
DTLZ7 8.0 3.5 8.0 3.5 8.0 3.5 3.5 1.0 10.0 6.0
Total 5.714 4.214 6.5 3.571 7.357 4.643 5.571 4.5 7.286 5.643

To show the behavior of three-objective optimization problems, we have replaced NSGA-II with NSGA-

III and run all algorithms on the DTLZ problems suite [257] test suite. The results are shown in Table 4.7.

Whereas for most problems, the GPSAF variants outperform the baseline algorithms, for DTLZ1 and

DTLZ3, this is not the case. Both problems consist of multi-modal convergence functions, which causes a

large amount of surrogate error. Thus, surrogate-assisted algorithms (including the four GPSAF is compared

to) are misguided. This seems to be a vital observation deserving to be investigated in more detail in

the future. Nevertheless, GPSAF improves the performance of baseline algorithms for the other problems.

GPSAF-SMS-EMOA shows overall the best results in this experiment with an average rank of 2.786 followed

by GPSAF-NSGA-III.
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Table 4.8: A comparison of NSGA-III, SMS-EMOA, and SPEA2 with their GPSAF variants with
four surrogate-assisted algorithms on constrained multi-objective optimization problems.

Problem ESE(max) NSGA-II GPSAF-
NSGA-II

SMS-
EMOA

GPSAF-
SMS-
EMOA

SPEA2 GPSAF-
SPEA2 HSMEA

C1-DTLZ1 300 4.0 4.0 4.0 4.0 4.0 4.0 4.0
C2-DTLZ2 300 4.5 4.5 4.5 4.5 4.5 4.5 1.0
C3-DTLZ4 300 5.0 1.5 5.0 5.0 5.0 5.0 1.5
BNH 100 5.5 2.5 7.0 4.0 5.5 2.5 1.0
SRN 100 6.0 3.0 6.0 3.0 6.0 3.0 1.0
TNK 100 6.0 2.0 6.0 2.0 6.0 2.0 4.0
OSY 300 5.0 1.5 5.0 3.0 5.0 1.5 7.0
Total 5.143 2.714 5.357 3.643 5.143 3.214 2.786

4.5.2.4 Constrained Multi-Objective Optimization

Lastly, we compare GPSAF on constrained multi-objective optimization problems which often occur in

real-world optimization. The challenge in dealing with multiple objectives and constraints in combination

with computationally expensive solution evaluations truly mimics the complexity of industrial optimization

problems. We have compared our results with HSMEA [136] a recently proposed algorithm for constraint

multi-objective optimization. With consultation of the authors, some minor modifications of the publicly

available source code had to be made for dealing with computationally expensive constraints – as this is

an assumption made in this study. The results on CDTLZ [258], BNH [259], SRN [260], TNK [261], and

OSY [262] are shown in Table 4.8. Again, one can observe that the GPSAF variants consistently improve

the performance of the baseline optimization methods. The only exception is C1-DTLZ1, where all methods

could find no feasible solution, and thus, an equal rank is assigned. We contribute this to the complexity of

the test problems given by the constraint violation and the multi-modality of the objective functions. For OSY

and TNK, the GPSAF variants show a significantly better performance than HSMEA; for C3-DTLZ4, the

performance is similar; and for C2-DTLZ2, BNH, and TNK, it performs better. Altogether, GPSAF-NSGA-II

can obtain a better rank than HSMEA, but it is fair to say that for three out of the seven constrained multi-

objective optimization problems, HSMEA is the winner. Nevertheless, GPSAF improved the performance

of baseline algorithms and showed competitive results to another surrogate-assisted optimization method.
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4.5.3 Summary of Section 4.5

This section has proposed a generalized probabilistic surrogate-assisted framework applicable to any type of

population-based algorithm. GSPAF incorporates two different phases to provide surrogate assistance, one

considering using the current state of the baseline algorithm and the other looking at multiple iterations into

the future. In contrast to other existing surrogate-assisted algorithms, the surrogate search is not reduced to

the final solutions on the surrogate, but the whole search pattern is utilized. Solutions are selected using a

probabilistic tournament that considers surrogate prediction errors for objectives and constraints from the

search pattern. GPSAF has been applied to multiple well-known population-based algorithms proposed for

unconstrained and constrained single and multi-objective optimization. We have provided comprehensive

results on test problem suites indicating that GPSAF competes and outperforms existing surrogate-assisted

methods. The combination of GPSAF creating well-performing surrogate-assisted algorithms with its

simplicity and broad applicability is very promising.

The encouraging results provide scope for further exploring generalized surrogate-assisted algorithms.

One main challenge of a generalized approach is the recommendation of hyper-parameter configurations

(𝛼, 𝛽, 𝜌, or 𝛾). The parameters have been set through empirical experiments; however, through the broad

applicability, different mechanisms of baseline algorithms on very different optimization problems make it

difficult to draw generally valid conclusions. A more systemic and possibly resource-intensive study will

provide an idea of how different hyper-parameter settings impact the performance of different algorithms. In

addition, experiments investigating the sensitivity shall be especially of interest.

The focus of this study was to explore different types of problems with multiple objectives and constraints.

Thus, the number of variables was kept relatively small as this is often the case for computationally expensive

problems. Therefore, even though the search space dimensions do not directly impact the idea proposed in

this section, it shall be part of a future study of how surrogate assistance performs for large-scale problems.

Moreover, the number of solution evaluations per run has been set to 300, which allows using all solutions

exhaustively for modeling without a large modeling overhead. However, more solution evaluations might be

feasible for mediocre expensive optimization problems.

Nevertheless, this extensive explorative study on the use of surrogates in single and multi-objective

optimization with and without constraints has indicated a viable new direction in congruence with existing

emerging studies for a generic optimization methodology.
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4.6 Summary of the Chapter

In this chapter, we have proposed a framework of generalized probabilistic surrogate-assisted algorithms.

The idea is based on improving the convergence of an existing algorithm by incorporating a surrogate’s

knowledge. First, we have proposed PSAF for computationally expensive single-objective problems where

surrogate influences the solutions to be evaluated through a tournament-based procedure with 𝛼 competitors.

An even stronger surrogate’s bias is introduced by using solutions with probability 𝜌 derived from continuing

the optimizing for 𝛽 iterations on the surrogate. Experiments with a parametric study on 𝛼, 𝛽, and 𝜌 have

shown that the proposed approach effectively improves the convergence behavior on various problems.

Second, we have extended PSAF to a more general framework GPSAF which can handle multiple objectives

and constraints. We have proposed comparing two solutions by using a constrained Pareto-dominance

relation under uncertainty by introducing some error noise to the objectives and constraints. The selection

of a single solution from a set is defined based on the pairwise comparisons in a knockout tournament. Both

tasks are incorporated into a generalized framework to use surrogates as assistance during convergence.

Results indicate that GPSAF applied to eight different unconstrained and constrained, as well as single-

and multi-objective algorithms, show a competitive performance. Altogether, the proposed probabilistic

surrogate-assisted concepts shall pave the way for new algorithms. PSAF and GPSAF allow using existing

algorithms’ benefits to solve computationally expensive problems using surrogates efficiently. Thus, this

could be an alternative to the widely-used fit-and-optimize method used in EGO and other algorithms.
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CHAPTER 5

HETEROGENEOUS EXPENSIVE OBJECTIVES AND CONSTRAINTS

This chapter focuses on efficiently optimizing problems with heterogeneously expensive objectives and

constraints. First, some examples demonstrate why this is an essential topic for optimization and why it is

worth exploiting varying times during evaluation. Second, different evaluation procedures in an algorithm

regarding the job granularity and their scheduling are discussed. Then, a more specific but frequently

occurring case of computationally expensive objectives with inexpensive constraints is investigated. Lastly,

any kind of heterogeneity of objectives and constraints is considered, which requires handling partial

information during evaluation and optimization. The majority of this chapter is based on the article published

in [26], except Section 5.4 which is based on [25].

5.1 Introduction

Many real-world optimization problems require the consideration of multiple conflicting objectives to reflect

the complexity of the application [9]. Additionally, the satisfaction of constraints is necessary to guarantee

to find an indeed feasible solution [263]. Let us quickly review the definition of an optimization problem

Minimize 𝑓𝑚(x), ∀𝑚 ∈ (1, . . . , 𝑀),

subject to 𝑔 𝑗 (x) ≤ 0, ∀ 𝑗 ∈ (1, . . . , 𝐽),

𝑥
(𝐿)
𝑑
≤ 𝑥𝑑 ≤ 𝑥 (𝑈)𝑑

, ∀𝑑 ∈ (1, . . . , 𝐷),

(5.1)

where x are the variables to optimize, 𝑥 (𝐿)
𝑑

and 𝑥 (𝑈)
𝑑

are the lower and upper bounds for the 𝑑-th variable, 𝑓𝑚

is the 𝑚-th objective, and 𝑔 𝑗 the 𝑗-th constraint function. For brevity, no equality constraints are considered

here. The above mathematical description makes it apparent that assessing the performance of one design

(solution) x requires evaluating a set of functions: 𝑀 objective and 𝐽 constraint functions. This results in

evaluating a total of 𝑀 + 𝐽 functions, from here on, referred to as target functions.

Because of the multi-disciplinary nature real-world problems, some of the target functions (a functional

group) may require calling a single third-party software, running a simulation [21, 22], or other computing-

intensive tasks [67, 153]. Depending on the software being used, the performance assessment might become

fairly time-consuming, for instance, a couple of hours or even days [28]. A typical practical optimization
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problem may have two to five such functional groups which must be independently called and evaluated. In

addition, there may be certain simplistic target functions, which are mathematically defined and are much

quicker to compute than the software or simulation codes.

When optimizing computationally expensive functions, special attention needs to be paid to the limited

solution evaluation budget. Over the last decades, researchers have predominantly used surrogate-assisted

optimization methods, where an interpolation or approximation model of the computationally expensive

target function is utilized during optimization [264]. Most existing surrogate-assisted algorithms assume

that the values of all target functions (objectives and constraints) are evaluated within one computing job

and become available only at the end of the most expensive target evaluation.

A point-based optimization method requires a single new solution to be evaluated at a time to complete

an iteration. Thus, the possibilities of exploiting the heterogeneity in the evaluation time of different target

functions are limited. However, for a population-based optimization algorithm, such as a generational

evolutionary computation (EC) algorithm, a set of offspring population members must be evaluated to

proceed to the next generation. It is intuitive to realize that if some target functions are relatively quick to

compute in contrast to others, the partial evaluation of population members can be utilized to determine if

a population member needs to go through with more expensive target function evaluations. Thus, there is a

need for building an evaluation plan for handling heterogeneous target functions for saving computational

time, specifically in a population-based optimization algorithm. This is the main crux of this paper.

The majority of the surrogate-assisted optimization methods create new infill solutions based on opti-

mization of the surrogate models. This is useful in its own right in hopefully finding good solutions in a

quick computational time. However, since infill solutions are to be evaluated fully for all target functions

before they can be used to update surrogate models or proceed with the algorithm, the ideas must be modified

for heterogeneous target functions to harness the full advantage of quick partial evaluation of them. Because

neither independently computable nor heterogeneously expensive functions have been a major focus of re-

search in the past, barring a few studies, [25, 140, 141], researchers and practitioners remain using existing

optimization methods by letting the optimizer wait until the calculation of all targets has finished. In such

a case, the most time-consuming target function determines the waiting time for a solution to be evaluated

entirely [140]. The waiting is caused by the optimization method not being capable of processing partial

information and results in unused time slowing down the convergence. Other challenges, such as managing
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computational resources, software licenses, or dealing with hardware or software failures, must be addressed

when optimizing real-world problems.

5.2 Related Work

Some effort has been made in the past to investigate the heterogeneous expensiveness of target functions.

Mostly, bi-objective problems with no constraints have been considered so far. This implies one objective

being computationally inexpensive (cheap) and one being expensive. Since only two target functions are

considered, authors also refer to the difference as a delay in evaluating the objective functions.

The first paper directly addressing heterogeneously expensive objectives was published by Allmendinger

et al. [140] in 2013. The authors have proposed three different ways of dealing with missing an objective

value caused by such a delay. First, the missing objective value can be filled by randomly drawing pseudo

values in the boundaries of the objective space (random). Second, some Gaussian noise is added to the

corresponding objective value of a randomly chosen individual (being evaluated on all objectives) and

assigned (noise-based). Third, the missing value is replaced by the nearest neighbor’s objective values –

which can be interpreted as fitness approximation – in the design space being evaluated on all objectives

(fitness inheritance). Moreover, for the evaluation selection, the authors have proposed to select always the

most recently generated offsprings (sweep selection) or to select them based on a priority score obtained by

full or partial non-dominated rank (priority selection). The results indicate that the fitness-inheritance-based

pseudo value assignment combined with the sweep selection performs the best.

This initial study has been extended by a number of schemes for handling the delay of an objective

function [141]. The authors proposed four different approaches: wait for all objectives to be finished

(Waiting); optimize the cheap objective first and evaluate the expensive objective for the optima found

(Fast-First); use the cheap objective to look ahead at possible promising offsprings each generation (Brood

Interleaving); incorporate even more selection pressure for the expensive objective evaluations by running a

single-objective optimization algorithm on the cheap objective (Speculative Interleaving); the experimental

study revealed that the performance is affected by the amount of delay for the objective. Speculative

Interleaving turned out to perform well when the termination criterion is based on a shorter time limit, and

the delay of the objectives is rather significant. Unsurprisingly, the Fast-First strategy outperformed other

methods when the objectives were highly positively correlated. The authors also found out that Waiting and
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Brood Interleaving became increasingly competitive with a longer running time of the algorithms.

In 2018, Chugh et al. [142] proposed HK-RVEA an extension of K-RVEA [124] which can handle

two objective functions with different latencies. Moreover, in contrast to other existing methods, where

the expensive objective is predicted by relatively simple approximation, the authors have used Kriging

(also known as Gaussian process), a powerful approximation model frequently used in surrogate-assisted

optimization. Significant changes compared to the original K-RVEA are related to the training and update

mechanism of the surrogate, driven by a single-objective evolutionary algorithm. A comparison regarding

bi-objective test problems with previously proposed approaches [140, 141] showed that HK-KRVEA works

especially well in cases with low latencies.

Thomann et al. have developed the trust region-based algorithm MHT that employs quadratic approx-

imations for objectives not being evaluated yet [143]. The Tammer-Weidner-functional is used for finding

descending directions to make use of the heterogeneity of the objective functions. The trust region limits the

surrogate’s underlying error and serves as a step size in each iteration. The authors have used the concept

of local ideal points given by the minimum of the local quadratic model to calculate the search direction in

each step. Because of the limited function evaluation budget and one computationally expensive function,

the goal of this initial study was to obtain only a single Pareto-efficient solution. In [265] the same authors

have proposed a method that starts from the Pareto-efficient solution found by MHT and attempts to explore

the neighborhood of the solution further to cover the whole or at least parts of the Pareto-front.

A surrogate-assisted approach called Tr-SAEA has been proposed by Wang et al. for heterogeneously

expensive bi-objective problems [144, 266]. Inevitably, the existence of a computationally inexpensive and

an expensive one quickly leads to knowledge asymmetry. Thus, the authors propose a transfer learning

scheme within a surrogate-assisted evolutionary algorithm to transfer knowledge from the fast objective to

the slower one. The transfer is achieved by fitting models where knowledge about the variables and the fast

objective serve as an input. The approach has shown to be more robust to varying levels of latency and

correlation between the objectives.

Another informative resource about the state-of-the-art of heterogeneous objectives and future research

can be found in [267]. The article focuses on unconstrained multi-objective optimization with heterogeneous

objective functions. Heterogeneity is discussed in a general manner with a focus on the heterogeneity of the

evaluation times. The authors give an overview of recent developments and possible gaps in this research
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direction.

In [268], independently computable functions in constrained single-objective optimization have been

investigated. The authors have proposed eight different constraint handling techniques by combining the

ranking of infeasible/feasible solutions, the evaluation type, and the constraint violation aggregation function.

In this first study, the sequence in which the constraints are evaluated is determined randomly. Results have

shown that this can already significantly improve the convergence of an optimization algorithm. Later on, the

work has been extended by incorporating a feasibility relaxation mechanism to permit constraint evaluation

for potentially important solutions close to the constraint boundary and by using the feasibility ratio to

determine the sequence for constraint evaluation [269]. By ordering the constraints based on the likelihood

of violation, computational resources can be saved by stopping to evaluate a solution further as soon as the

first violating constraint is discovered. Instead of using only knowledge of the feasibility ratio of constraints

gathered from the past, a surrogate for predicting a solution’s likelihood to violate a specific constraint is used

in [270]. Other novelties presented by the authors are a modified infeasibility-driven ranking for ordering the

partially evaluated solutions and an adaptive switching between partial and complete evaluation. Whereas

the ranking is essential to give the potentially infeasible solution a chance to survive, the switching guarantees

a minimum amount of entirely evaluated solutions.

Besides publications directly addressing heterogeneously expensive objectives, the connection to related

research directions shall be discussed. One way of addressing the expensive objective is approximating

the value with a surrogate before doing the time-consuming evaluation. This introduces a low-fidelity

evaluation (using the approximation model) with an underlying prediction error and a high-fidelity model

(time-consuming but without any error) for the corresponding objective. Having an objective function

with different fidelity levels is also known as multi-fidelity optimization [271]. However, in contrast to

heterogeneously expensive problems addressed in this paper, in multi-fidelity optimization, not only one

but multiple functions with often different expenses exist for the same target. Moreover, the existence of

multiple independently computable target functions requires to think about the design of distributed and

asynchronous algorithms [143]. Distributing the evaluation of a set of solutions and their objectives and

constraints on different computing nodes causes asynchronicity. An implementation has to address the

asynchronicity, for instance, by waiting for all information necessary to obtain and return the results –

the most common implementation in algorithms – or by processing asynchronous events and thus partial
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function eval(X, V)
for i in 1… |X|

for j in 1 … |V|
enqueue(X[i], V[j])

end

function eval(X, V)
for i in 1… |X|
enqueue(X[i], V)

end

function eval(X, V)
for j in 1 … |V|
enqueue(X, V[j])

end

function eval(X, V)
enqueue(X, V)
end
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Figure 5.1: Strategies for the evaluation procedure considering a set of solutions 𝑋 and target values
𝑉 to be calculated.

evaluations. Furthermore, the situation of having partially evaluated solutions is in a way related to not

considering some objectives or targets temporarily. Some studies have addressed the more specific case

of removing (redundant) objectives for the whole optimization run [272]. In the case of heterogeneous

expensiveness, one usually knows beforehand what objective is expensive and, thus, might less frequently

be available for all individuals early on. This changes the viewpoint from what objective is being removed

to how to decide whether it is worthwhile to spend time evaluating the time-consuming evaluation of the

expansive objective for some individuals or not. Moreover, accessing only partial information of objectives

or constraints is related to analyzing a data set with missing values. The occurrence of missing values has

been studied thoroughly in data science and machine learning and thus is worth having a look at [273].

To the best of our knowledge, the combination of heterogeneously expensive functions for constrained

multi-objective optimization has not been explored yet. Thus, this work shall provide a starting proof-of-

principle study for different evaluation times considering both multiple objectives and constraints and should

encourage more attention in the near future.
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5.3 Background

Before different approaches for optimizing problems with heterogeneous target functions are discussed, the

evaluation process must be looked at systematically. In general, the evaluation process itself can be split into

two interdependent parts: i) the jobs being submitted by the algorithm, and ii) the scheduling of these jobs.

We propose a scheme of different ways for an algorithm to submit jobs regarding a set of solutions and target

functions for the former. This defines the frequency and granularity of information the algorithms retrieves.

However, the schedules determine the point of time the algorithm is notified of the job to be finished. The

purpose of the scheduler is to decide what job should be executed next. Since resources are commonly

limited, a scheduler often uses a job queue or even more sophisticated load-balancing techniques. Even

though this may sound like a minor implementation detail, for practitioners running optimization methods

in a distributed computing environment, this can become crucially important.

5.3.1 Evaluations Jobs

The frequency and granularity of information the algorithms retrieve opens up new possible ways of asyn-

chronous calculations to efficiently use computing resources. The evaluation of a set of solutions 𝑋 with

multiple target values 𝑉 can be achieved in several ways. For instance, the algorithm can evaluate each

solution in 𝑋 sequentially by submitting a job for each entry of 𝑋 separately or a single job containing all

solutions in 𝑋 as a batch. Second, the algorithm can decide what target values each of the jobs should include:

Should it be all targets in 𝑉 that provide complete information about a solution, or just a subset of targets?

These choices result in four different ways of packaging the computation jobs defining how the evaluation

takes place (see Figure 5.1). We refer to strategy Y/Z where Y and Z are replaced by E (elementwise) if

only a single value and by B (batch) if multiple solutions are chosen. The naming convention is applied

analogously to Z with respect to the target values. The B/B strategy is most commonly used, where the

algorithm schedules the calculation of all solutions 𝑋 and target values𝑉 only once and retrieves the resulting

values when the job has finished. This reduces the number of scheduled jobs to one; however, it does not

allow the algorithm to retrieve any intermediate information during evaluation. Contrary to scheduling all

jobs at once, the calculation can be split into many small jobs using the E/E strategy. For each solution 𝑋𝑖

and each target value 𝑉 𝑗 , a separated job is submitted. The resulting number of jobs |𝐽 | is equal to |𝑋 | · |𝑉 |,
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and the algorithm retrieves a notification whenever each of the jobs has finished. Thus, it has the highest fre-

quency and granularity of information considered in this schema. However, possible calculations that might

be shared across the calculation of target values are done repeatedly. The E/B strategy schedules a single

solution at a time but multiple target values, which results in a job list of size |𝑋 |. Since the set of solutions

evaluated at a time is usually larger than the target values, this is the strategy with the second most frequency

of information. The B/E strategy submits multiple jobs for each target value but does not split up the set of

solutions. This results in |𝑉 | jobs to be processed. Analogously, the E/E strategy variables necessary for

the calculations of multiple target values cannot be shared. Nevertheless, if some target values are obtained

significantly faster than others, the algorithm is notified without waiting for more computationally expensive

target values. It is worth mentioning that a target 𝑣 ∈ 𝑉 can also be a group of targets always being evaluated

together. Each partitioning has benefits and drawbacks regarding their flow of information to the algorithm

and the concrete implementation.

5.3.2 Job Scheduling

Job partitioning defines the general frequency and granularity of information, but the time of retrieving

pieces of information remains unknown without concrete timing. The most straightforward implementation

of a scheduler is a FIFO or priority queue, allowing new jobs to be added and retrieving the next job to

compute. For now, let us assume all jobs in the queue are processed in parallel which requires distributing

jobs to at least |𝑋 | · |𝑉 | workers.

Further, the optimization problem consists of two objectives, 𝑓1 and 𝑓2, and one constraint, 𝑔1. We

assume different execution times for each target value: 𝑡 ( 𝑓1) for the first, 𝑡 ( 𝑓2) for the second objective, and

𝑡 (𝑔1) for the constraint. The evaluation times are defined as 𝑡 ( 𝑓1) < 𝑡 (𝑔1) < 𝑡 ( 𝑓2). Figure 5.2 demonstrates

a possible evaluation procedure for a solution set of size three. Moreover, it shows the information flow

for the ·/B (E/B and B/B) and ·/E (B/E and E/E) strategy. The ·/B strategy returns the result given by the

union of all target values 𝑉 = 𝑓1 ∪ 𝑓2 ∪ 𝑔1 exactly once. This implies the algorithm is waiting to obtain full

information about all solutions and is idle meanwhile. The waiting time is given by max(𝑡 ( 𝑓1), 𝑡 ( 𝑓2), 𝑡 (𝑔1))

or in general by max(𝑡 (𝑉1), . . . , 𝑡 (𝑉|𝑉 |)). One single outlier (with a rather larger evaluation time) will

increase the overall waiting time and greatly impact the algorithm’s overall performance. In this example,

the maximum evaluation time is given by 𝑡 ( 𝑓2), which is almost three times larger than 𝑡 ( 𝑓1) (see Figure 5.2).
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Figure 5.2: A comparison of ·/B and ·/E strategies assuming parallel processing of all jobs, requiring
different average times for evaluation.

On the contrary, the ·/E strategy provides some information to the algorithm whenever the calculation of a

target value has been finished. Thus, for the three target values the algorithm sends the first notification at

𝑡 ( 𝑓1) with 𝑓1, the second at 𝑡 (𝑔1) with 𝑔1, and the third at 𝑡 ( 𝑓2) with 𝑓2. This implies that the optimization

algorithm retrieves multiple partial function evaluations at different times, changing the evaluation schedule

by step-wise eliminations, thereby making the optimization task more efficient. A batch-wise evaluation of

targets would not allow any such advantage.

A different execution of jobs might occur, not assuming that a computing unit exists for all jobs

simultaneously. Figure 5.3 illustrates a possible execution of jobs with four instances/worker𝑊1 to𝑊4 using

the E/E strategy. Because the scheduler decides what jobs to execute next, no prediction about the availability

of target values can be made. Moreover, the dispatcher will report different amounts of partial information;

thus, an asynchronous algorithm design is desired.

The systematic analysis of the evaluation process will help researchers think of possible implementations

and their impact on the algorithm’s design. Based on the above evaluation strategies for dealing with

heterogeneously expensive objectives and constraints, we propose a population-based optimization method

with B/E evaluation strategy, which makes use of partial evaluation of target functions to carefully eliminate
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Figure 5.3: Job schedule using a queue.

evaluation of expensive targets for potentially inferior population members, thereby making the overall

method computationally efficient.

5.4 Computationally Expensive Objectives and Inexpensive Constraints

In the past years, a significant amount of research has been done in optimizing computationally expensive

and time-consuming objective functions using various surrogate modeling approaches. Constraints have

often been neglected or assumed to be a by-product of the expensive objective computation, thereby being

available after executing expensive evaluation routines. However, many optimization problems in practice

have separately evaluable computationally inexpensive geometrical or physical constraint functions, while

the objectives may still be time-consuming. This scenario probably makes the simplest case of handling

heterogeneous and multi-scale surrogate modeling in the presence of constraints. Even though computation-

ally expensive objective functions have been studied extensively [104, 23, 38], computationally inexpensive

constraints have been paid little attention to in literature. Thus, we propose IC-SA-NSGA-II, an inexpensive

constraint handling method using a surrogate-assisted version of NSGA-II [10]. First, we describe three

different methods to generate a feasible design of experiments, and second, the outline of the algorithm. Our

proposed method makes explicit use of the computationally inexpensive constraint functions and guarantees

a solution’s feasibility before running the time-consuming simulation of objective functions.
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5.4.1 Design of Experiments

In surrogate-assisted optimization [104], the so-called Design of Experiments (DOE) needs to be generated to

build the initial model(s). The number of initial points 𝑁DOE depends on different factors, such as the number

of variables or the complexity of the fitness landscape. A standard method frequently used to generate a well-

spaced set of points is Latin Hypercube Sampling (LHS) [234]. However, with the availability of an efficient

feasibility check, more sophisticated approaches would be preferred. Therefore, three different methods

returning a well-spaced set of feasible solutions using inexpensive constraint functions are described.

Rejection Based Sampling (RBS): A relatively simple approach is modifying LHS, which already provides

a well-spaced set of solutions, to consider feasibility. Such a feasible and well-spaced set of points can be

obtained by using LHS to produce a point set 𝑃 and rejecting all infeasible solutions to obtain a set of feasible

solutions 𝑃(feas). Because infeasible solutions have been discarded, the resulting point set does not have the

desired number of points (|𝑃(feas) | < 𝑁DOE) and, thus, the process shall be repeated until enough feasible

solutions have been found. If the size of the obtained point set exceeds 𝑁DOE, a subset is selected randomly.

Niching Genetic Algorithm (NGA): The sampling process itself can be seen as an optimization problem

where the objective is given by the constraint violation 𝑓 (x) = cv(x), which takes a value zero for a feasible

solution x, and a positive value proportional to the sum of normalized constraint violation of all constraints

if x is infeasible. Such an objective function results in a multi-modal optimization problem where a diverse

solution set with objective values of zeros shall be found. One type of algorithm used for multi-modal

problems is niching-based genetic algorithms (NGA), where the diversity is ensured by an 𝜖-clearing based

environmental survival [274]. For single-objective optimization problems, the 𝜖-clearing occurs in the

design space and guarantees a distance (usually Euclidean distance is used) from one solution to another.

The survival always selects the best performing not already selected or cleared solution and then clears

its neighborhood with less than 𝜖 distance. Thus, the spread of solutions is accomplished by disfavoring

solutions in each other’s vicinity. After setting the objective to be the constraint violation, a suitable 𝜖 has

to be found. The suitability of a given 𝜖 depends on the size of the feasible region(s) of the corresponding

optimization problem and is unknown beforehand. On the one hand, if 𝜖 is too large, the number of optimal

solutions found by the algorithm will not exceed 𝑁DOE. On the other hand, if 𝜖 is too small, the solution set’s

spread has room for improvement. For tuning the hyper-parameter 𝜖 , we start with 𝜖 = 𝜖0 (a number close to
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Figure 5.4: The two steps in each iteration: exploitation and exploration.

1.0) and execute NGA. If the size of the obtained solution set is less than 𝑁DOE, we set 𝜖 = 0.9 · 𝜖 and repeat

this procedure until a solution set of at least of size 𝑁DOE is found.

Riesz s-Energy Optimization (Energy): The Riesz s-Energy [275] is a generalization of potential energy

concept and is defined for the point set z as

𝑈 (z) = 1
2

|z |∑︁
𝑖=1

|z |∑︁
𝑗=1
𝑗≠𝑖

1

z(𝑖) − z( 𝑗)


𝑠 , z ∈ R𝑛×𝑀 , (5.2)

where the inverse norm to the power 𝑠 of each pair of points (z(𝑖) and z( 𝑗) ) is summed up. It has already

been shown in [276] that Riesz s-Energy can be used to achieve a well-spaced point set by executing a

gradient-based algorithm. The restriction made there that all points have to lie on the unit simplex has been

replaced by the feasibility check provided by the computationally inexpensive constraint. Thus, a point is

only replaced by its successor obtained by the gradient update if the successor is feasible. The algorithm’s

initial point set, which is necessary to be provided, is first tried to be obtained by RBS, and if NGA could

not find a sufficient number of feasible solutions.
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Algorithm 5.1: IC-SA-NSGA-II: Inexpensive Constrained Surrogate-Assisted NSGA-II
Input : Number of Variables 𝑛, Expensive Objective Function 𝑓 (x), Inexpensive Constraint

Function 𝑔(x), Maximum Number of Solution Evaluations ESEmax, Number of Design of
Experiments 𝑁DOE, Exploration Points 𝑁 (explr) , Exploitation Points 𝑁 (exploit) , Number of
generations for exploitation 𝑘 , Multiplier of offsprings for exploration 𝑠.

/* initialize feasible solutions using the inexpensive function 𝑔 */
1 ← constrained_sampling(’energy’, 𝑁DOE, 𝑔)
2 F← 𝑓 ()
3 while | | < ESE max do

/* exploitation using the surrogate */

4 𝑓 ← fit_surrogate(,F)
5

(
(cand),F(cand)

)
← optimize(’nsga2’, 𝑓 , 𝑔, ,F, 𝑘)

6
(
(cand),F(cand)

)
← eliminate_duplicates(,(cand) ,F(cand))

7 𝐶 ← cluster(’k_means’, 𝑁 (exploit) ,F(cand))
8 (surrogate) ← ranking_selection((cand), 𝐶, crowding(F(cand)))

/* exploration using mating and least crowded selection */

9
′
,F
′ ← survival(,F)

10 (mat) ← mating(′,F′, 𝑠 · 𝑁 (explr) )
11 (explr) ← feas_and_max_distance_selection((mat),(cand) , 𝑋, 𝑔)

/* evaluate and merge to the archive */

12 F(explr) ← 𝑓 ((explr)); F(surrogate) ← 𝑓 ((surrogate));
13 ← ∪(explr)∪(surrogate)
14 F← F ∪ F(explr) ∪ F(surrogate)

15 end

5.4.2 Methodology

The outline of IC-SA-NSGA-II is shown in Algorithm 5.1. The initial design of experiments of size 𝑁DOE are

obtained by the proposed initialization method based on Riesz s-Energy and then evaluated by executing the

expensive simulation 𝑓 (x) (Lines 1 and 2). Afterward, while the number of solution evaluations ESEmax is

not exceeded (Line 3) the algorithm continues to generate 𝑁 (exploit) solutions derived from the surrogate for

exploitation and 𝑁 (explr) solutions obtained by mating and a distance-based selection for exploration. The

exploitation starts with fitting surrogate model(s) which results in the approximation function 𝑓 (Line 4).

Using the surrogates 𝑓 and the computationally inexpensive function 𝑔 the optimization is continued or in

other words simulated assuming 𝑓 = 𝑓 for 𝑘 more generations (Line 5). From the last simulated generation,

the candidates (cand) and F(cand) are extracted from the optimum, and duplicates with respect to F are

eliminated (Line 6). This ensures F(cand) to consist of only non-dominated solutions with respect to F.
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From (cand) only 𝑁 (exploit) solutions are chosen for expensive evaluation by executing ranking selection [1]

in each cluster where the ranking is based on the crowding distance in F(cand). Figure 5.4a illustrates

the exploitation procedure of a population with five solutions (circles). The algorithm found 10 candidate

solutions (triangles) by optimizing the surrogate and the inexpensive constraint functions. In this example,

𝑁 (exploit) = 3 and, thus, the K-means algorithm is instantiated to find three clusters. From each cluster, the

solutions obtained by ranking selection based on the crowding distance are assigned to (surrogate).

Besides the exploitation, some exploration is essential to be incorporated into a surrogate-assisted

algorithm. The exploration is based on the evolutionary recombination of NSGA-II with post-filtering based

on the distance in the design space (Line 9 to 11). First, the environmental survival is executed because the

mating should not be based on the archive but instead on a subset of more promising solutions ′. Second,

mating takes place to produce 𝑠 · 𝑁 (explr) solutions (mat) and, third, the set of feasible solutions from (mat)

being maximally away from and (cand) are assigned to (explr). Figure 5.4b demonstrates this explorative

step in more detail. All infeasible solutions generated through mating have already been eliminated. The

solution with the maximum distance to others is selected, which represents the least crowded solution with

respect to and (cand). The exploration step purposefully chooses solutions not suggested by the surrogate

and helps to escape from local optima if necessary. After selecting the first solution with the maximum

distance to others, the solution is marked as selected and considered in the distance calculations for the

second iteration in the selection procedure. Finally, the infill solutions (surrogate) and (explr) are evaluated

on the expensive objective functions 𝑓 and merged with and F (Line 12 to 14).

In our implementation, we set the number of the initial design of experiments to 𝑁DOE = 11𝑛 − 1, where

𝑛 is the number of variables. Moreover, we simulate NSGA-II for 𝑘 = 20 generations with 100 offsprings

each generation on the surrogate model. We have used the NSGA-II implementation available in pymoo [29]

for optimization and the Radial Basis Function (RBF) implementation with a cubic kernel and linear tail

available in pySOT [277] for the surrogate model. In each iteration five new solutions are evaluated using the

expensive objective function, where 𝑁 (exploit) = 3 and 𝑁 (explr) = 2. Furthermore, we set the multiplier of

offsprings during exploration to 𝑠 = 100. Moreover, it is worth pointing out that we compare our method with

SA-NSGA-II, which does not assume the constraints are inexpensive but follows overall the same procedure.

In contrast to IC-SA-NSGAII, it uses regular Latin Hypercube Sampling for the initial design of experiments

and fits a surrogate of the constrained function(s) to evaluate feasibility.
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5.4.3 Results

The proposed method uses the inexpensiveness of the constraint function(s), and, thus, the performance

on constrained multi-objective optimization problems will be evaluated. In this chapter, we focus on bi-

objective problems with up to 10 constraint functions. In contrast to the constraint function, we treat all

objectives to be computationally expensive.

To evaluate the algorithm’s performance, we use the CTP test problems suite [278], which has been

designed to address constraints of varying difficulty. Moreover, the performance on other bi-objective

constrained optimization problems frequently used in literature such as OSY [9], TNK [9], SRN [9],

C2DTLZ2 [258], C3DTLZ4 [258], and Car Side Impact (CAR) [258] shall be evaluated. The number

of solution evaluations ESEmax is kept relatively small to mimic the evaluation budget of time-consuming

simulations. In the following, first, the performance of methods proposed to generate a feasible solution

set for the design of experiments are visually analyzed, and, second, the algorithm’s performance on test

problems is discussed.

In Figure 5.5, the results of Rejection Based Sampling (RBS), Niching GA (NGA), and Riesz s-Energy

(Energy) are shown. Compared to RBS and NGA, Energy obtains a very uniform and well-spaced point set

in the inside of the feasible region across all problems. Also, it is worth noting that points on the constraint

boundary are found, which can be very valuable to start with because, in practice, optima frequently lie on

constraint boundaries. For the purpose of visualization, the CTP8 problem with two variables (and nine

feasible disconnected regions) has been investigated. All methods were able to obtain more than one feasible

solution in all regions.

Table 5.1 lists the median values (obtained from 11 runs) of the Inverted Generational Distance

(IGD) [240] indicator of 14 constrained bi-objective optimization problems. The obtained results have

been normalized with respect to the ideal and nadir point of each problem’s True front. The best performing

method and other statistically similar methods (Wilcoxon rank test, 𝑝 = 0.05) are marked in bold. Besides

IC-SA-NSGA-II, we ran a more steady-state version of NSGA-II with five offsprings in each generation and

an initial population of size 11𝑛 − 1 sampled by LHS. Moreover, SA-NSGA-II is the proposed method with-

out the modifications made to exploit the availability of inexpensive constraints. Clearly, IC-SA-NSGA-II

outperforms the other approaches for most of the problems. For 11 out of 14 optimization problems, our

proposed method shows the best performance significantly; for two problems (CTP1 and SRN), SA-NSGA-
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Figure 5.5: Sampling the design of experiments only in the feasible space using Rejection-Based
Sampling (RBS), Niching Genetic Algorithm (NGA) and Energy Method.
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Table 5.1: The median normalized Inverted Generational Distance (IGD) values out of 11 runs for
NSGA-II, SA-NSGA-II and IC-SA-NSGA-II on constrained bi-objective optimization problems.
The best performing method and other statistically similar methods are marked in bold.

Problem Variables Constraints ESEmax NSGA-II SA-NSGA-II IC-SA-NSGA-II

CTP1 10 2 200 3.6399 0.0237 0.0196
CTP2 10 1 200 1.4422 0.1721 0.0173
CTP3 10 1 200 1.2282 0.2752 0.0357
CTP4 10 1 400 0.8489 0.3969 0.0736
CTP5 10 1 400 0.7662 0.1145 0.0139
CTP6 10 1 400 7.7155 0.1909 0.0117
CTP7 10 1 400 1.5517 0.0164 0.0032
CTP8 10 2 400 11.6452 0.5963 0.0074

OSY 6 6 500 0.4539 0.0273 0.0381
SRN 2 2 200 0.0263 0.0112 0.0108
TNK 2 2 200 0.1281 0.0200 0.0092

C2DTLZ2 12 1 200 0.3787 0.1185 0.0484
C3DTLZ4 7 2 200 0.2622 0.1210 0.0481

CAR 7 10 200 0.2362 0.0168 0.0147

II performs statistically similarly; and for one problem (OSY), SA-NSGA-II shows slightly better results.

NSGA-II is not able to find a near-optimal set of solutions with the limited ESEmax for any of the selected

problems.

Figure 5.6 shows the obtained solution set for each method of representative runs for CTP2, CTP4,

CTP8, C3DTLZ4, TNK, and OSY, for which well-converged and well-diversified non-dominated solutions

are found with 200 to 500 solution evaluations. For the difficult problem CTP2, our proposed method

converges near the true optima, which lies on the constraint boundary. Similarly, for CTP8, where nine

feasible islands for which three contain the Pareto-optimal set exist and, thus, a good exploration of the

search space is needed. For C3DTLZ4, IC-SA-NSGA-II has obtained a better diversity in the solution set

than SA-NSGA-II.

5.4.4 Summary of Section 5.4

The optimization of computationally expensive optimization problems has become more important in prac-

tice. Often such problems have physical or geometrical constraints that are relatively computationally

inexpensive and can be formulated in equations without running the simulation. To solve these kinds of
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Figure 5.6: Solutions in the objective space of representative runs for CTP2, CTP4, CTP8,
C3DTLZ4, TNK, and OSY.
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problems, we have proposed IC-SA-NSGA-II, a surrogate-assisted NSGA-II, which efficiently handles inex-

pensive constraint functions in the initial design of experiments as well as in each iteration. We have tested

our proposed method on 14 constrained bi-objective optimization problems, and our results indicate that

efficiently handling the inexpensive constraints helps to converge faster.

This section has focused on solving constrained optimization problems with inexpensive constraints

and expensive objective functions with limited solution evaluations. However, some other heterogeneous

problems with different time scales of objective and constraint evaluations must be considered next. For

instance, the constraints can be even more time-consuming than the objective function, or the objectives

and constraints can have different time scales within themselves. After addressing such cases, there is a

need for developing a unified algorithm for generic heterogeneous optimization problems. Moreover, studies

about heterogeneously expensive optimization problems have so far been limited to bi-objective optimization

problems. This section has started to add some more complexity by adding constraint functions. However, the

effect of heterogeneity for many-objective optimization problems shall provide more insides into exploiting

the discrepancy of evaluation times and asynchronicity.

5.5 Constrained Multi-Objective Optimization Problems With Heteroge-
neous Evaluation Times

After investigating a scenario with computationally inexpensive constraints and expensive objectives, this

shall now be generalized to independently computable heterogeneously expensive target functions. Most

existing algorithms do not particularly exploit the practical fact that the objectives and constraints are often

independently computable. The independent evaluation usually originates from different software packages

being executed to determine the performance of a solution. The procedure of assessing the performance

of a solution might be fundamentally different for each software package, and thus most of the time, the

computing time will vary. This results in an optimization problem with independently heterogeneously

expensive objectives and constraints that the optimization method must evaluate and use.

For most practical problems, at least one of the target functions involves a time-consuming evaluation

process (we refer here as high-fidelity evaluations), thereby causing an optimization run to go on for hours

or days. In order to optimize such problems, surrogate-assisted optimization methods are prevalent. Using

a few high-fidelity solution evaluations, a surrogate model (an approximate mathematical function) of each

100



target function is created. Instead of using high-fidelity expensive target functions, surrogate models are

usually optimized to find a set of infill points. Evaluating a solution using the surrogate models is referred

to as low-fidelity evaluation. The created infill points are evaluated using high-fidelity target functions,

and the surrogate models are updated. Since the optimization task is performed on the surrogate models

(low-fidelity evaluation), there is usually a substantial gain in computational time compared to optimization

with high-fidelity evaluations. In general, there is a trade-off between gain in computational effort and the

resulting accuracy of the obtained solutions in surrogate-assisted optimization methods. If a few high-fidelity

solutions are used to build surrogate models, the computational time will be small, but the resulting surrogate

model may be inaccurate. Thus, optimizing the surrogate models may result in inferior infill solutions in

terms of the high-fidelity target functions. Surrogate-assisted optimization algorithms make a fine balance

between the building cost of surrogate models and how extensively they are optimized.

However, it is important to note that this paper does not propose another surrogate-assisted optimiza-

tion algorithm, nor does it plan to compare the proposed methodology with an existing surrogate-assisted

optimization method. Here, we focus on handling heterogeneously expensive target functions within an

optimization algorithm utilizing surrogate models. Thus, no effort is made to directly find new infill points

using the surrogates. However, instead, models are used to evaluate new solutions to estimate their expected

target function values without computing them with high-fidelity evaluation procedures. This is not to say

that built surrogate models cannot be exploited further beyond the scope of our proposed methodology,

and rather this is something we plan to execute in a subsequent study. Here, we address the presence of

heterogeneity in practical target function evaluations and how a population-based algorithm can exploit it to

come up with a computationally quick algorithm.

5.5.1 How to Exploit Heterogeneity of an Optimization Problem?

Most existing population-based algorithms do not assume target functions are independently computable and

thus wait to update the old population until all new population members are evaluated for all target functions.

If all target functions must be computed simultaneously by a single evaluation procedure, or the evaluation

time for all target functions is negligible compared to the desired time for executing an optimization run, no

special treatment for any evaluation schedule is necessary.

However, let us consider that not all target functions can be evaluated as a single block of computation,
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but rather independent groups of target functions must be evaluated using different evaluation schemes.

Moreover, some groups of target functions require comparatively more time to get evaluated compared to

other groups, so there is heterogeneity in the computing efforts. Such problems are predominant in most

practical problems, including science and engineering. A practical design must be evaluated from multi-

physics considerations, such as aerodynamics, fluid mechanics, solid mechanics, aesthetics, and others. In

such a scenario, if a new design is already evaluated to be worse for certain relatively inexpensive target

functions, it can be avoided for further processing within the algorithm and thereby saving computational

time by not evaluating expensive target functions. Importantly, such decisions can only be made relative to

a set of solutions and cannot be made for a single solution. This is the reason why EC methods are ideal

candidates for handling heterogeneous target functions.

For instance, let us assume a genetic algorithm after having executed a few iterations when solving a

bi-objective optimization problem with one constraint. The algorithm has completed the mating process and

created a set of new offspring solutions 𝑋 to be evaluated for two objectives 𝑓1 and 𝑓2 and constraint 𝑔1.

Instead of evaluating all solutions at once for 𝑓1, 𝑓2, and 𝑔1, only one or multiple solutions can be chosen

from 𝑋 to retrieve one target function value at a time, say, the constraint 𝑔1. Depending on the values of

𝑔1, some solutions can be discarded already because they are found to be infeasible. The more “promising”

solutions are kept and will continue to be evaluated on the next target 𝑓1. Analogously, some solutions can be

eliminated, and only a few are finally sent to obtain the values 𝑓2. By processing partial information, not all

solutions will be evaluated for all targets, which speeds up the overall evaluation process. Such exploitation

of partial information requires answering two elementary questions.

(Q1) Target Order Problem: A relevant question arises: “In what order should the targets be evaluated?”

Intuitively, this should depend on the actual evaluation times of target functions and their predicted target

values. For the example discussed above, if computational times are having the following relationships:

𝑡 ( 𝑓1) < 𝑡 (𝑔1) < 𝑡 ( 𝑓2), then an ordering of the targets by evaluation time should follow least to most

expensive, or 𝑓1 followed by 𝑔1, which is then followed by 𝑓2. But the values of the target functions must

also play an essential role in deciding on the order of evaluation. Suppose 𝑔1 is found to be positive. In

that case, this indicates that the solution is infeasible, and a smart algorithm may decide not to evaluate 𝑓1

and 𝑓2 at all for this solution to save computational time. That is well and good, but there is a problem with

the above method. In order to know their relative target function values, the solution has to be evaluated
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for all target functions. If all functions are already evaluated, there is no need to do any ordering. This

rounding argument can be answered by making low-fidelity evaluations of offspring population members

using the current surrogate models. But since surrogate models are approximate, each surrogate model may

have different prediction accuracy. Thus, the order of their evaluation should depend on a solution’s rank in

the population-based on its predicted target values (for example, in multi-objective NSGA-II, a combination

of non-dominated rank and crowding distance), their accuracy of prediction, and computational time for

high-fidelity evaluation of target functions. Despite the importance of 𝑔1 in determining the feasibility of

a solution, it may turn out that computation of the cheapest objective function ( 𝑓1) first is beneficial over

the constraint evaluation to determine if the most expensive objective ( 𝑓2) needs to be evaluated at all. A

combined metric for ordering target functions is provided in Subsection 5.5.2.3.

(Q2) Elimination Problem: The next question is as follows: “Under what circumstances should an

offspring solution be eliminated and not continued to be evaluated for the remaining targets?” If all targets

would be evaluated for all solutions, then the optimization method does not make any use of separately

computing solutions. Therefore, some solutions need to be eliminated during the evaluation process.

Whereas the order defines what partial information should be made available next, the elimination decides

whether a solution is worth keeping and evaluated for more targets. The decision is based on partial

information, where some targets are evaluated, their high-fidelity values are available, and a surrogate only

predicts others. Another valuable piece of information is the surrogate accuracy derived from the past, which

helps to judge how reliable the predictions are.

5.5.2 Methodology

5.5.2.1 Survival Under Uncertainty

An environment selection or survival decides given a set of solutions which one are the fittest and shall survive.

Under certainty, numerous survivals have been proposed in the literature, for instance, for unconstrained

single-objective genetic algorithms simply a selection based on the objective values [1] or in NSGA-

II, survival based on non-dominated sorting and crowding distance [10]. However, most environmental

survivals proposed in the evolutionary computation literature assume that the exact values for objectives

and constraints are known. The goal of the proposed probabilistic survival is to make existing survival

103



Algorithm 5.2: Probabilistic Survival: Subset Selection under Uncertainty
Input : Population 𝑃, Offsprings 𝑄, Uncertain Targets 𝑉 , Predictions errors 𝑒, Iterations 𝛾

/* Repeat the experiment 𝛾 times */
1 foreach 𝑘 ← 1 to 𝛾 do
2 𝛼𝑖 ← 0 ∀𝑖 ∈ (1, . . . , |𝑄 |)
3 𝑀 ← merge_and_copy(𝑃, 𝑄)
4 foreach 𝑖 ← 1 to (1, . . . , |𝑀 |) do

/* Add noise for uncertain target */
5 foreach 𝑣 ∈ 𝑉 do
6 𝑀 [𝑣] = 𝑀 [𝑣] + N (0, 𝑒2

𝑣)
7 end
8 end
9 𝑀 ′← survival(𝑀)

10 foreach 𝑖 ← 1 to (1, . . . , |𝑄 |) do
/* If survived, increase the counter */

11 if 𝑄𝑖 ∈ 𝑀 ′ then 𝛼𝑖 ← 𝛼𝑖 + 1 ;
12 end
13 end
/* Convert survival counts to probabilities */

14 foreach 𝑖 ← 1 to (1, . . . , |𝑄 |) do 𝛼𝑖 ← 𝛼𝑖/𝛾 ;
15 return 𝛼

procedures applicable under uncertainty. With uncertainty, we refer to the situation that some target values

originate from a prediction with an underlying error. Despite the situation where either all targets are based

on predictions or all are exact, the survival also needs to handle cases of mixed uncertainty, where some

targets are exact and some predicted.

The proposed probabilistic survival does not change an existing survival but calls it repeatedly with

some introduced error noise for predicted targets. The procedure is illustrated in Algorithm 5.2. Given a

parent population 𝑃, offsprings 𝑄, a set of uncertain targets 𝑉 , the average prediction error 𝑒𝑣 of each target

𝑣 ∈ 𝑉 , the number of iterations the experiment is repeated 𝛾, and a survival probability 𝛼𝑖 for each offspring

𝑄𝑖 . In total, the survival under certainty calls the survival considering certainty exactly 𝛾 times. In each

iteration, first, the population 𝑃 and offsprings 𝑄 are merged and copied to 𝑀 . Then for each solution, for

each uncertain target 𝑣 ∈ 𝑉 Gaussian noise is added N(0, 𝑒2
𝑣). The population, 𝑀 with error noise, is sent

to the survival selection, and the survivors are assigned to 𝑀 ′. If solution 𝑖 has survived and thus is in 𝑀 ′,

its counter 𝛼𝑖 is increased by one. Finally, the survival counters 𝛼𝑖 are converted to probabilities by dividing

by the number of experiments conducted 𝛾.
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Algorithm 5.3: Probabilistic Surrogate-Guided Mating
Input : Population 𝑃, Surrogate 𝑆, Predictions errors 𝑒, Mating Iterations 𝛽, Prob. Surv.

Iterations 𝛾
/* Regular mating used by EA */

1 𝑄 ← mating()
2 foreach 𝑘 ∈ (1, . . . , 𝛽) do

/* Double the number of offsprings */
3 𝑄 ′← 𝑄 ∪ mating()

/* Surv. Prob. of each offspring */
4 𝛼← prob_surv(𝑃,𝑄 ′, 𝑉, 𝑒, 𝛾)

/* Discard unpromising offsprings */
5 𝑄 ← top(𝑄 ′, |𝑄 |, 𝛼, ’descending’)
6 end
7 return 𝑄

With a mix of certain and uncertain targets, the proposed survival might look as follows. Assuming the

objective space values 𝑓1 already have been assessed using the high-fidelity evaluation, and 𝑓2 and 𝑔̂1 are

predicted by a surrogate with a known prediction error of 𝑒 𝑓2 and 𝑒𝑔̂1 , respectively. In each iteration, 𝑓2 is

provided with error noise N(0, 𝑒2
𝑓2
), as well as the constraint 𝑔̂1 with N(0, 𝑒2

𝑔̂1
). The outcome of multiple

survival experiments with different amounts of introduced error noise for uncertain targets ( 𝑓2 and 𝑔1) lets

us derive the probability of a solution to survive in a mixed certain and uncertain environment.

5.5.2.2 Probabilistic Surrogate-Guided Mating

Given the prediction and the average error for each target, one can calculate the survival probability 𝛼 for

each offspring originating from mating. Since the mating only uses information about the parents and no

predictions, many solutions may have a relatively low survival probability and might be directly discarded.

In order to increase the survival probability, this information can be directly used during mating.

In Algorithm 5.3 the proposed modified mating is demonstrated. The idea is based on repeating

the original mating procedure mating() multiple (𝛽) times by only keeping the most promising offspring

solutions. Initially, the offspring population𝑄 is created. Then in each iteration, another offspring population

is merged to create𝑄 ′. For each solution in𝑄 ′, the survival probability is determined to keep solutions most

likely to survive. This is achieved by taking the top |𝑄 | solutions from 𝑄 ′ based on a descending sorting by

𝛼. After having the process repeated 𝛽 times, the solutions that have repeatedly survived are returned.
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5.5.2.3 Heterogeneously Expensive Evolutionary Algorithm (HE-EA)

The pseudo-code of the proposed heterogeneously expensive evolutionary algorithm (HE-EA) is shown

in Algorithm 5.4. HE-EA assumes that an approximation of evaluation times (ET) for each target exists

beforehand. However, if this should not be the case, the evaluation time can be kept track of using a

book-keeping approach after evaluating each target. Initially, a list of all targets 𝑉 is created where first all

objectives and then all constraints appear. Afterward, HE-EA creates a space-filling set of designs 𝑃. Then,

for each target 𝑣 ∈ 𝑉 , the initial population 𝑃 is evaluated by calling the high-fidelity evaluation function

evaluate(P,v), the survival error 𝜌𝑣 is set to one, the surrogate 𝑆𝑣 is fit, and the mean absolute error 𝑒𝑣

is estimated using cross-validation. Cross-validation is helpful to provide to measure the complexity of each

target.

Until the time limit of running the optimization procedure has been met, the algorithm’s main loop is

repeated. It starts by performing the mating procedure to generate the offspring population 𝑄 and predicting

the objective and constraints predict(S,Q) using the surrogate 𝑆. Analogously, the current population 𝑃

is copied to 𝑃′, and the surrogate is used to obtain approximations. Next, the order in which the targets

are supposed to be evaluated needs to be determined. The order should be based on the trade-off between

evaluation time ET and surrogate error 𝑒. The function order(ET,𝛼) first calculates an indicator value for

each target. We propose a metric called information gain (IG𝑘) of the 𝑘-th target as the survival error (𝜌𝑘)

per unit evaluation time (ET𝑘), as follows:

IG𝑘 =
𝜌𝑘

ET𝑘
. (5.3)

Targets with larger information gain are preferred to be evaluated first and thus, the target evaluation order 𝜏

is given by sorting IG in descending order. To illustrate the intuition behind this order, let us consider a few

examples where two targets, 𝑣1 and 𝑣2, are compared with each other. Assuming both targets have the same

evaluation time ET1 = ET2, but target one has a larger survival error 𝜌1 > 𝜌2. This results in IG1 > IG2

and the first target to be evaluated first. Intuitively this is the right decision because the target with a more

significant estimation error can potentially eliminate more solutions already and thus save computation time.

On the other hand, let two targets have the same survival error 𝜌1 = 𝜌2, but the first one have a larger

evaluation time ET1 > ET2. This results in IG1 < IG2. In this case, the effort for evaluation is identical,

and the target modeled less accurately is evaluated first. The intuition behind information gain is defining a
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Algorithm 5.4: Heterogeneously Expensive Evolutionary Algorithm (HE-EA)
Input : Evaluation Times ET, Max. Survival Prob. 𝛼 (min)

/* Initialize the target vector */
1 𝑉 ← ( 𝑓1, . . . , 𝑓𝑚, 𝑔1, . . . , 𝑔𝐽 )
/* Sample design of experiments */

2 𝑃← doe()
3 foreach 𝑣 ∈ 𝑉 do
4 evaluate(P, v)
5 𝜌𝑣 ← 1.0
6 𝑆𝑣 ← fit_surrogate(𝑃, 𝑣)
7 𝑒𝑣 ← estm_mae(𝑆, 𝑃, 𝑣)
8 end
9 while time left do

/* Create the offspring population */
10 𝑄 ← prob_mating(𝑃,𝑄, 𝑆, 𝑒, 𝛾, 𝛽)

/* Prediction of P and Q */
11 𝑄 ′← predict(S, Q) 𝑃′← predict(S, P);

/* The order to eval. targets */
12 𝜏 ← order(ET, 𝜌)

/* Targets with uncertainty */

13 𝑉 (𝑈) ← 𝑉

/* Survival prob. before evaluation */

14 𝛼 (0) ← prob_surv(𝑃′, 𝑄 ′, 𝑉 (𝑈) , 𝑒)
15 foreach 𝑘 ← 1 to |𝑉 | do
16 𝑣 ← 𝑉 [𝜏𝑘]

/* Evaluate and copy targets */
17 copy(𝑃, 𝑃′, 𝑣); evaluate(𝑄 ′, 𝑣)
18 𝑉 (𝑈) ← 𝑉 (𝑈) \ {𝑣}
19 𝛼 (𝑘) ← prob_surv(𝑃′, 𝑄 ′, 𝑉 (𝑈) , 𝑒)

/* Calculate the survival error */

20 𝜌𝑣 ←
∑ |𝑄′ |

𝑖=1 |𝛼
(𝑘)
𝑖
− 𝛼 (𝑘−1)

𝑖
|

/* Fit target surrogates and calc. 𝑒 */
21 𝑆𝑣 ← fit_surrogate(𝑃, 𝑣)
22 𝑒𝑣 ← mae(𝑆, 𝑃, 𝑣)

/* Eliminate unpromising solutions */

23 𝑄 ← eliminate(𝑄, 𝛼 (𝑘) , 𝛼 (min) )
/* If all solultions were eliminated */

24 if |𝑄 | = 0 then break ;
25 end
26 𝑃← survival(𝑃 ∪𝑄)
27 end

target order giving preference to targets that are difficult to predict by the surrogates or are computationally

less expensive during evaluation.
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Before starting with the evaluation procedure, the uncertain targets 𝑉 (𝑈) are initialized to be all targets

𝑉 , and the initial survival probabilities 𝛼 (0) are obtained by executing the probabilistic survival (see Al-

gorithm 5.2). The evaluation process of the offsprings 𝑄 loops over the targets 𝑉 in the order of 𝜏 using

the counter variable 𝑘 . In each iteration, the target 𝑣 ← 𝑉 [𝜏𝑘] is then evaluated for the offsprings and

copied over for the population. After removing the current target 𝑣 from the remaining targets 𝑉 (𝑈) , the new

survival probability 𝛼 (𝑘) is calculated, and the survival error 𝜌𝑣 determined. The survival error is the mean

absolute error between the two different 𝛼’s and represents the error introduced by the prediction of target 𝑣.

Afterward, the surrogate used for the predictions of target 𝑣 is updated and its prediction error set. In the end

of each target iteration, offsprings with a survival probability 𝛼 (𝑘)
𝑖
≤ 𝛼 (min) are eliminated. The elimination

of unpromising offsprings saves time because their evaluation of remaining targets is skipped over.

At the end of the evaluation process, the deterministic survival of the remaining fully evaluated offspring

population and the current population is performed. In some iterations, no offspring might be left due to the

iterative elimination, and one might wonder if the algorithm can be caught in a deadlock. However, in such

iterations, the surrogate for each target has been updated using the already eliminated but partially evaluated

offspring solutions. The procedure is then repeated until the time limit of running the algorithm has been

reached. A time limit as a termination criterion instead of counting solution evaluation is recommended

because it considers full and partial evaluations of individuals.

Let us have a close look at one iteration of HE-EA for a bi-objective optimization problem having two

objectives ( 𝑓1, 𝑓2) and one constraint (𝑔1). Let us assume that the target order has been determined to be ( 𝑓1,

𝑔1, 𝑓2). A flowchart diagram illustrates the process of evaluating the offspring population (see Figure 5.7).

Initially, the current population 𝑃 was copied and predicted by the surrogate to become 𝑃′. This step can be

essential because comparing only predictions with predictions ensures comparing only apples with apples

and oranges with oranges. However, if all surrogates fit through the data set exactly, this step is skipped.

After generating the predicted population, the offspring population𝑄 is created by surrogate-guided mating,

and their predictions are available. In the flowchart, targets predicted by surrogates are shown in blue, and

the ones with exact values are shown in orange. In the first iteration of the elimination-based evaluation,

the parent and the offspring population are predicted by the surrogate, and the survival probability of 𝛼 (0) is

calculated. After evaluating the first target 𝑣 ← 𝑓1, the survival probability 𝑎 (1) having no error noise for 𝑓1

is predicted. The survival error 𝜌 𝑓1 is then determined by the mean absolute error of survival probabilities.
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Before moving on to the next target, all offspring members with 𝑎 (1) less than 𝑎 (min) are eliminated. Then, the

target evaluation is continued by evaluating 𝑔1, performing probabilistic survival result in 𝑎 (2) and updating

the surrogate error 𝜌𝑔1 . Analogously, in the last iteration, 𝑓2 is evaluated. It is worth pointing out that

𝛼 (3) does not require any probabilities survival because after having evaluated all targets, no noise will be

added, which results in a deterministic survival procedure. Thus, the survival probabilities are either zero

or one. Finally, the population and the fully evaluated offspring population are sent to the survival operator

to determine the population for the next iteration. Notice that the above algorithm also degenerates to the

single-objective constraint problems with heterogeneous evaluation times among objective ( 𝑓 ) and multiple

constraints (𝑔).

5.5.2.4 Surrogate Management

Even though surrogate modeling is not the focus of this study, a few words need to be said to complete

the algorithm description. In this study, each target value is modeled independently to avoid any error

accumulation across targets. Thus, in total |𝑀 | + |𝐽 | surrogate models are built [23]. For each target,

different surrogate models are fitted, and then one with the least mean absolute error is chosen as a predictor.

We have used two different types of models: Radial Basis Functions (RBFs) [34] and Kriging [35, 55]. Each

of them is instantiated with different hyper-parameters, resulting in a list of potential models from which one

is selected. It is worth mentioning that the number of data points for each model may vary because of partial

evaluations. In order to decrease the computational burden of surrogate fitting, in this study, only the previous

200 data points are considered. The mean absolute error is estimated in each iteration by considering the

data points as the training set and the infill solutions evaluated as a validation set. This allows a realistic

error estimation in each iteration.

5.5.3 Results and Discussions

The capability of the proposed method to exploit independently computable and heterogeneous expensive

optimization problems shall be examined next.

We have chosen NSGA-II [10] with a population size of 100 for unconstrained and constrained bi-

objective problems. For problems with three objectives, we have used NSGA-III [279, 258, 12] with 91
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reference directions originating from uniform weight sampling [280] with a partition number of 12. For

both algorithms, the default parameter settings proposed in the papers and defined in their implementations

available in the multi-objective optimization framework in Python called pymoo [29] is used. In each

experiment, three different algorithms are compared with each other. First, the baseline algorithm without

any modifications: This represents an optimization method waiting for all targets to be evaluated despite

their heterogeneous evaluation times. Second is a modification of the baseline algorithm incorporating the

Elimination-Based Evaluation (EBE) with the default mating procedure where the survival probabilities

have been assessed by repeating the survival a hundred times (𝛾 = 100). The third is the complete

heterogeneously expensive (HE) evolutionary algorithm with a surrogate-guided mating (𝛽 = 30) and

elimination-based evaluation, where the consideration of two different variations shall help to give credit to

eliminating unpromising solutions during evaluation and creating solutions more likely to survive beforehand

separately. Throughout the experiment, we have fixed the minimum survival probability to 𝛼 (min) = 0.3.

Some numerical experiments have shown that this seems to be a reasonable value for discarding unpromising

individuals. When proposing a new method, the number of hyper-parameters shall be kept as small as

possible. It is worth mentioning that in this study, the hyper-parameters 𝛾, 𝛽, and 𝛼 (min) have an intuitive

meaning which helps to set them properly. Their values were determined through an empirical study, and

the performance of configurations close to the suggested one has shown to be similar. Thus, no significant

sensitivity could be observed.

The performance of the proposed methods is assessed on unconstrained and constrained multi-objective

test problems where the time for objective and constraint functions has been systematically varied. We

have conducted 11 runs for each problem and algorithm to address the stochastic behavior of the underlying

optimization method. All tables presented in this section show the average IGD values [240]. The best-

performing algorithm for each problem is marked as the winner (∗), and other algorithms performing

significantly similar (Wilcoxon signed-rank test, 𝑝 = 0.05) are labeled by (≈), and ones are performing

significantly worse by (−). Moreover, we have denoted the number of variables by 𝑁 , the number of

objectives by 𝑀 , and the number of constraints by 𝐽 for each problem. Starting with bi-objective problems,

we have used the ZDT [253] problem suite with the evaluation times for a solution are fixed to 20 time units.

The overall evaluation budget is set to seven hours for ZDT1-3 and to 10 hours for ZDT4. This equals 13

and 18 generations of fully evaluated individuals, respectively. For the experiment, the evaluation time of
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Table 5.2: Average IGD values for unconstrained bi-objective problems from the ZDT test suite.
NSGA-II does not use heterogeneous evaluation time information, hence produce identical IGD
value for all different evaluation time combinations.

𝑡 ( 𝑓1, 𝑓2) NSGA-II EBE-NSGA-II HE-NSGA-II
ZDT1

(𝑁 = 10, 𝑀 = 2, 𝐽 = 0)
(1,19)

0.3258 (−)

0.1053 (−) 0.0166 (*)
(5,15) 0.1078 (−) 0.0169 (*)
(10,10) 0.1162 (−) 0.0120 (*)
(15,5) 0.0968 (−) 0.0119 (*)
(19,1) 0.0882 (−) 0.0099 (*)

ZDT2
(𝑁 = 10, 𝑀 = 2, 𝐽 = 0)

(1,19)

0.6457 (−)

0.1942 (−) 0.0099 (*)
(5,15) 0.2303 (−) 0.0107 (*)
(10,10) 0.2123 (−) 0.0139 (*)
(15,5) 0.2233 (−) 0.0148 (*)
(19,1) 0.2316 (−) 0.0143 (*)

ZDT3
(𝑁 = 10, 𝑀 = 2, 𝐽 = 0)

(1,19)

0.2009 (−)

0.0854 (−) 0.0376 (*)
(5,15) 0.0930 (−) 0.0474 (*)
(10,10) 0.0777 (−) 0.0348 (*)
(15,5) 0.0597 (−) 0.0324 (*)
(19,1) 0.0540 (−) 0.0194 (*)

ZDT4
(𝑁 = 5, 𝑀 = 2, 𝐽 = 0)

(1,19)

27.7984 (−)

19.4416 (*) 20.4623 (≈)
(5,15) 21.1689 (≈) 17.5283 (*)
(10,10) 17.7420 (≈) 16.9622 (*)
(15,5) 16.2275 (*) 16.2289 (≈)
(19,1) 14.9382 (*) 15.5179 (≈)

0 (*) 3 (*) 17 (*)
Total 0 (≈) 2 (≈) 3 (≈)

20 (−) 15 (−) 0 (−)

the first objective is set to 1, 5, 15, or 19, and the one of the second complementary to make their sum equal

to 20. The results are shown in Table 5.2. First, one can note that the different evaluation times always lead

to identical results for the baseline algorithm, caused by the algorithm waiting for all targets to be evaluated

before proceeding. Second, EBE and HE were both able to outperform the NSGA-II no matter what time
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Table 5.3: Average IGD values for the constrained bi-objective problem TNK.

TNK
(𝑁 = 2, 𝑀 = 2, 𝐽 = 2)

𝑡( 𝑓 ,𝑔) NSGA-II EBE-NSGA-II HE-NSGA-II

(1,19)

0.0214 (−)

0.0034 (*) 0.0043 (≈)
(5,15) 0.0035 (−) 0.0030 (*)
(10,10) 0.0040 (−) 0.0031 (*)
(15,5) 0.0043 (−) 0.0030 (*)
(19,1) 0.0046 (−) 0.0030 (*)

0 (*) 1 (*) 4 (*)
Total 0 (≈) 0 (≈) 1 (≈)

5 (−) 4 (−) 0 (−)

variation of 𝑡 ( 𝑓1, 𝑓2) has been chosen. By comparing EBE and HE with each other, one can conclude that

increasing the probability of a solution surviving during mating is in general helpful. For ZDT1 and ZDT2,

much better results, and for ZDT3, still significantly better results have been achieved. For ZDT4, none of

the methods can converge close enough to the true Pareto front, given the limited evaluation budget. Thus,

for ZDT4, even though both methods outperform NSGA-II, no clear winner can be declared. Altogether,

we can conclude that for the considered unconstrained bi-objective problems, HE-NSGA-II shows the best

results by winning 17/20 test instances and being significantly similar in the remaining ones.

One benefit of the proposed approach is considering groups of targets and the capability of extending

the concept of heterogeneously expensive functions to multiple objectives and constraints. This will become

apparent when discussing the following constrained multi-objective problems. First, we investigate TNK [9,

261], which has two objectives and two constraints and a discontinuous Pareto front. We have considered

all objectives and all constraints, each as a group of targets. This imitates the real-world scenario where

Software A returns both objective values and Software B calculates the constraints.

The evaluation time variations have been set analogously to the unconstrained bi-objective problems,

and for each run, the time limit is set to three hours. The results listed in Table 5.3 show the superiority

of EBE and HE over the NSGA-II. Across all time variations, EBE and HE converge to the Pareto-optimal

set. For four out of five problems, HE-NSGA-II turns out to be significantly the best performing method.

Interestingly for 𝑡 ( 𝑓 , 𝑔) = (1, 19) representation, the case of objectives being much less computationally

expensive than constraints, EBE performs marginally better.
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Table 5.4: Average IGD values for the constrained bi-objective problem Welded Beam.

Welded Beam
(𝑁 = 4, 𝑀 = 2 ,𝐽 = 4)

NSGA-II EBE-NSGA-II HE-NSGA-II

𝑡 0.078 (−) 0.0577 (−) 0.0168 (*)

For the welded-beam design problem [281], the first objective 𝑓1 is the cost of fabricating the welded

beam and can be written in a closed-form mathematical term. Thus, it is relatively quick to compute. The

second objective 𝑓2 and constraints 𝑔1 and 𝑔2 are the deflection of the beam-end and hence belong to the

same target function group. Constraint 𝑔4 is less time-consuming, but 𝑔3 is the buckling load, requiring

more computational effort. Following relative computational times are considered for the target functions:

𝑡 ( 𝑓1) = 1, 𝑡 ({ 𝑓2, 𝑔1, 𝑔2}) = 12, 𝑡 (𝑔3) = 12, 𝑡 (𝑔4) = 1. Again, the time limit has been set to three hours.

Overall, the results indicate that HE-NSGA-II performs significantly better than the two competitors.

However, it is also worth mentioning that the difference between the average IGD values is relatively small.

Some further analysis has shown that is caused by the { 𝑓2, 𝑔1, 𝑔2} groups of targets being responsible for a

relatively high survival prediction error. Therefore, even though their evaluation is more time-consuming

than others, they are scheduled first when the order of targets 𝜏 is determined. This clearly shows the

challenge of defining the evaluation order consisting of more complex target groups with mixed complexity

and expense.

Moreover, the proposed methods shall be analyzed for a DTLZ2 [257], an unconstrained three objective

optimization problem. The experiment is set up that the evaluation times of all objectives 𝑓1, 𝑓2, and 𝑓3

sum up to 30. In total, we have run the methods for 16 different combinations, varying the expensiveness

from being completely homogeneous (10,10,10) to one objective being 28 times more computationally

expensive to evaluate than the cheapest function. The time limit for each run has been set to four hours.

The average results IGD values for all time variations are shown in Table 5.5. Whereas EBE improved the

performance from NSGA-III, incorporating a more sophisticated mating in HE-NSGA-III outperforms the

other competitors significantly across all problems. This implies that the prediction of values during the run

was quite accurate and that putting some more bias into the offspring population has shown its effect. Another

interesting fact is that the more heterogeneous the evaluations become, the better the results. Whereas for

homogeneous times (10,10,10), HE-NSGA-III achieved an average IGD value of 0.104, which is decreased
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Table 5.5: Average IGD values for the three-objective problem DTLZ2.

DTLZ2
(𝑁 = 10, 𝑀 = 3, 𝐽 = 0)

𝑡 ( 𝑓1, 𝑓2, 𝑓3) NSGA-III EBE-NSGA-III HE-NSGA-III

(28,1,1)

0.2824 (−)

0.1992 (−) 0.0794 (*)
(1,28,1) 0.2053 (−) 0.0806 (*)
(1,1,28) 0.1926 (−) 0.0820 (*)
(25,4,1) 0.2051 (−) 0.0802 (*)
(25,1,4) 0.2077 (−) 0.0791 (*)
(1,25,4) 0.2050 (−) 0.0811 (*)
(4,25,1) 0.2017 (−) 0.0810 (*)
(1,4,25) 0.2015 (−) 0.0825 (*)
(4,1,25) 0.2011 (−) 0.0815 (*)
(15,10,5) 0.2068 (−) 0.0916 (*)
(15,5,10) 0.2095 (−) 0.0957 (*)
(5,15,10) 0.2021 (−) 0.0930 (*)
(10,15,5) 0.2088 (−) 0.0961 (*)
(5,10,15) 0.2049 (−) 0.0889 (*)
(10,5,15) 0.2027 (−) 0.0901 (*)
(10,10,10) 0.2047 (−) 0.1040 (*)

0 (*) 0 (*) 16 (*)
Total 0 (≈) 0 (≈) 0 (≈)

16 (−) 16 (−) 0 (−)

to 0.0794 for (28,1,1).

Lastly, some visualizations of objective space from different optimization problems are discussed.

Figure 5.8 shows the median performing runs for the baseline algorithms (NSGA-II or NSGA-III) and their

EBS and HE variants. We have chosen some representative evaluation times for each problem. The scatter

plots confirm the discussion of the results based on IGD values and give the reader an idea of the differences

in convergence and diversity to expect by exploiting the heterogeneity. For ZDT1-3 (see Figure 5.8a to

5.8c), one can observe the significant difference between the baseline approach and the proposed variants.

For ZDT4 (see Figure 5.8d), the limit evaluation budget was not sufficient to converge for any method.

It is worth noting that the figure reveals that EBE achieves a better diversity than HE. For Welded Beam

(see Figure 5.8e), HE-NSGA-II can find more solutions with a smaller value of 𝑓1 whereas for TNK (see

Figure 5.8f), visually no significant difference can be observed. For DTLZ2, Figures 5.8g and 5.8h show that

a larger amount of heterogeneity in fact helps to converge faster and find a more diverse set. Another problem
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(a) ZDT1-(10,10) (b) ZDT2-(1,19) (c) ZDT3-(5,15)

(d) ZDT4-(19,1) (e) Welded Beam (f) TNK-(1,19)

(g) DTLZ2-(10,10,10) (h) DTLZ2-(28,1,1) (i) Carside Impact

Figure 5.8: An illustration of the objective space for different types of unconstrained and constrained
multi-objective problems. The results are based on representative run of the median performance
for each problem. The different expensiveness of target functions and termination criteria are set
analogously to the other experiments. The visibly better red-colored points are obtained using the
proposed HE-NSGA-III procedure.

where the diversity of solutions has been shown to be significantly better is the Carside Impact problem

shown in Figure 5.8i. The problem consisting of three objectives and 10 constraints has been set up so that

the objectives are computationally inexpensive and the constraints computationally expensive. Altogether,

the visual inspections of the median runs of the experiment show how the exploitation of heterogeneously

expensive functions can improve the convergence of an existing algorithm.
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5.5.4 Summary of Section 5.5

In this section, the differently expensive target functions have been exploited by an elimination-based

evaluation which discards partially evaluated solutions based on their likelihood of surviving. The concept

can consider each target function separately but also handle target groups. This can especially be useful for

practitioners when a software package returns more than one objective or constraint to be used in optimization.

Moreover, the proposed approach is applicable to other evolutionary methods where an elitist environment

survival is incorporated. This has been demonstrated by adding the support of differently expensive targets

to two well-known multi-objective algorithms. Results on unconstrained and constrained bi-objective and

multi-objective problems indicate that the proposed method can efficiently exploit the fact of differently

time-consuming target functions.

5.6 Summary of the Chapter

This chapter has investigated the evaluation of independently computable functions during optimization.

Four different strategies for evaluating the objectives and constraints of a solution set have been proposed.

Afterward, optimization problems with inexpensive constraints and expensive objectives were studied. The

optimization has started with a well-spaced point set in the feasible space; the inexpensiveness of constraints

is exploited by filtering out any kind of infeasible solution before evaluating the more expensive objectives.

Then, problems with heterogeneity across constraints and objectives have been considered. There, the

strategy of evaluating a set of solutions for a specific target (B/E) has been used to handle constrained multi-

objective optimization problems with heterogeneous evaluation times. The proposed evolutionary algorithm

has addressed the order of targets during evaluation by sorting the targets by the survival prediction error

divided by evaluation time.

This chapter shall also be extended in three directions. First, a further complication of the expensiveness

of target functions is worth investigating. In this work, the evaluation time of each target function is kept

constant, independent of the solution being evaluated. However, this does not need to be necessarily the

case when solving real-world problems. Besides requiring a more sophisticated book-keeping approach of

evaluation times, this also introduces another level of uncertainty to the target ordering problem, which needs

to be addressed.

Second, the generational evaluation approach proposed in this proof-of-principle study can be extended
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to develop a steady-state method for further gain in overall computational time. In such a method, each

offspring member can be evaluated with respect to the parent population in an appropriate adaptively obtained

order of the target functions. Its acceptance and elimination can be determined using surrogate models.

Third, this chapter has focused on how to take advantage of heterogeneous functions for objectives and

constraints within a population-based optimization algorithm. Although surrogate models are created and

used to determine the order of evaluating target functions and eliminating evaluation of some population

members depending on their multi-objective rank and evaluation time, the surrogate models themselves can

be exploited further in arriving at better infill solutions. We defer such studies, which will eventually allow

a complete surrogate-assisted heterogeneity-handling EC method that would be practically viable than the

usual all-at-a-time evaluation-based algorithms. Nevertheless, our suggestion of a target function ranking

scheme based on a member’s worth in terms of non-domination and diversity in the population, accuracy

of the prediction models, and actual computational times is unique and marks a start of the further future

studies for solving heterogeneously expensive problems.
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CHAPTER 6

REAL-WORLD APPLICATIONS

This chapter presents two case studies of real-world applications with computationally expensive objectives

functions. The first case study consists of the optimization of a cylinder head water jacket design considering

two objectives. The article has been originally published in [28] and is presented with minor modifications

to ensure consistency throughout this thesis. Two of the three elementary questions of surrogate assistance,

What and With What, have been answered analogous to Chapter 4. However, the How question is addressed

by employing a local search on the surrogates using a trust-region approach. It is worth mentioning that this

study is one of the outcomes of a two-year collaboration with a well-known automobile company.

The second case study addresses the optimization of the design of an electric machine with two objectives

and various (geometric) constraints. Analogously to the first case study, the notation has been adapted for

consistency based on the original article published in [282]. In total, 10 design variables with a precision of

two decimal places are considered. The problem consists of computationally expensive objectives but much

less time-consuming constraints. The inexpensiveness of constraints is an important fact to be exploited by

the optimization method. Both case studies shall give some insights into how to deal with computationally

expensive problems in practice.

6.1 Case Study I: Cylinder Head Water Jacket Optimization for Two Objec-
tives with a Limited Budget of Solution Evaluations

6.1.1 Introduction

Evolutionary algorithms are robust optimization tools that can handle different challenges of practical

optimization problems such as uncertainty [283], multimodality [284], constraints [263], and conflicting

objectives [9]. These algorithms do not require any major simplification of the actual problem, a matter

which is often required by the classical point-based methods [285]. However, this flexibility usually comes

at the cost of a requirement for a high number of solution evaluations. For example, the evaluation budget in

BBOB2009 test suite was set to 106𝐷 [286], in which 𝐷 is the number of variables in the problem.

In many applications, commonly referred to as computationally expensive problems, the evaluation
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of each solution requires a significant amount of computation time and effort. For example, in optimal

mechanical design, the evaluation of each candidate design may require a finite element or computational

fluid dynamic analysis, which can take anywhere from a few hours to a few days. In some extreme cases,

a solution evaluation may even require a costly prototyping and experimental testing process [287]. The

computation time of a design evaluation is the bottleneck of the optimization process even if the evaluation

process can be parallelized; therefore, in such applications, the evaluation budget is generally limited to a

few hundred or less.

The goal in such problems is to make the most out of the available evaluation budget, which is fulfilling

the design objective(s) as much as possible. A limited evaluation budget clarifies the importance of a careful

selection of candidate solutions for evaluation, which motivates the use of surrogate models [104], also

known as metamodels, function approximation [121], and response surface methodologies [89].

One decisive feature of surrogate-assisted algorithms is the metamodel update, which is also known as

model management or evolution control [105]. Quite often, a single metamodel is used, which is updated

during the optimization process [121]. The most suitable metamodel is not known beforehand and the choice

of the metamodel is often based on its popularity in the related field. Such metamodel-assisted algorithms

are generally less accurate than more sophisticated methods which employ an ensemble of metamodels.

Updating the surrogate is more complicated in the latter group and requires a metric to assess candidate

metamodels in order to select the most suitable metamodel at each cycle. Another prominent algorithmic

aspect of surrogate-assisted methods is the way to select new solutions for high-fidelity evaluation, which is

referred to as infill criterion or infill strategy [121]. Regarding recent development in parallel computing, it

is practically crucial that a surrogate-assisted method be able to select several infill solutions so that they can

be evaluated in parallel to reduce the optimization process wall-clock time.

This section develops a surrogate-assisted evolutionary algorithm for single and multi-objective optimiza-

tion problems. This method, called Proximity-Based Surrogate-Assisted Evolutionary Algorithm (PSA-EA),

selects new candidate solutions following two goals. First, these solutions should optimize the predicted

objective values, and second, they should maximize the information collected about specific regions of the

problem landscape. This industry-motivated method is tailored to problems with the following features:

• The number of high-fidelity solution evaluations is limited to 50-100.
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• The number of variables varies between 5 and 10.

• The required computational time for each solution evaluation is high (a few minutes to a few days);

therefore, the computation time for other parts of the optimization process is negligible.

• The number of cycles is limited; thus, the method must be able to select several infill solutions in

parallel.

6.1.2 Proposed Proximity-Based Surrogate-Assisted Optimization Method

This section elaborates Proximity-Based Surrogate-Assisted Evolutionary Algorithm (PSA-EA) for compu-

tationally expensive single-objective and multi-objective problems.

6.1.2.1 Selection of Initial High-Fidelity Solutions

The selection of initial high-fidelity solutions is an important phase because the sampling strategy directly

affects the goodness of the initial metamodel. The space-filling approach in this section is based on the

Maximin method [288], which aims to maximize the minimum distance among all solutions. The employed

algorithm in this study is an adaption of the initialization procedure in [289]: The first initial point is

generated randomly. Then, a new random point is sampled and accepted if it maintains a distance of at

least 𝑅ini
0 from already selected solutions; otherwise, it is discarded and a new random point is generated. If

several successive attempts are rejected (e.g., 100 attempts), 𝑅ini
0 is slightly reduced (𝑅ini

0 ← 0.99𝑅ini
0 ). This

process continues until all initial high-fidelity solutions are generated. The distance variable 𝑅ini
0 is initially

set to a conservatively large value, which is half of the maximum distance that can exist in the search space

between two points (𝑅ini
0 = 0.5∥𝑿𝑈 − 𝑿 (𝐿) ∥2).

6.1.2.2 Parallel Infill Strategy

Evolutionary algorithms should be able to maintain a reasonable trade-off between exploration and exploita-

tion. The likelihood of missing the global optimum increases if the search is not exploratory enough. On

the other hand, when focusing more on exploration, no time might be left to exploit the gathered information

about the design space. Evolutionary algorithms generally focus on exploration in the beginning and gradu-
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ally emphasize exploitation of the available information. For example, the initialization of the population is

an entirely exploratory process since the objective values of the solutions are not considered.

Finding a reasonable trade-off between exploration and exploitation is more complex for parallel infill

strategies. If exploration is ignored, infill solutions may be selected very close to each other. To address

this issue, Sóbester et al. [290] performed multimodal optimization of the surrogate model and selected the

optima of the approximate function as new infill solutions. This strategy, however, limits the number of

infill solutions in a cycle to the number of optima in the approximate function. Furthermore, this strategy

might be too exploratory for the final cycles, when the method should make the most out of the existing

information. To address this issue, Zhan et al. [291] allowed selection of more infill solutions in the vicinity

of fitter optima; however, their method needed to tune a threshold value.

As discussed, each new solution provides some new information on the landscape of the objective

function(s). If this solution is far from the existing ones, this information will be significant. For surrogate-

assisted methods, this information can provide an extra contribution: It can improve the goodness of the

metamodel in subsequent cycles if the new infill solution is relatively far from the existing high-fidelity

solutions. To take the diversity of new infill solutions into account, this study defines an infeasible spherical

region with radius 𝑅prox around each existing high-fidelity solution so that subsequent infill solutions are

not selected close to existing ones. A greater 𝑅prox enforces that the new infill solutions considerably

contribute to improving the goodness of the surrogate model in future cycles (primary goal). Solutions with

good predicted values are preferred only if they are sufficiently far from the existing high-fidelity solutions

(secondary goal).

The accuracy of the predicted values strongly depends on the goodness of the metamodel. Predictions

close to observations are more accurate than predictions far from them. Therefore, the concept of trust

regions [292] is used to control the amount of acceptable uncertainty in the search process. The trust

region defines spherical regions of radius 𝑅trust around each solution. Subsequent solutions for high-fidelity

evaluation must be selected in the trust region. If 𝑅trust is large, points with high predicted fitness are probably

those with high uncertainty. This can mislead the search to regions where the metamodel is less accurate.

The value of 𝑅trust can control the exploitation of the optimization process: a small 𝑅trust forces the algorithm

to select new infill solutions close to existing ones, where the prediction error is small. Combining both

concepts, a permissible search region is defined where all infill points must lie. 𝑅trust ≥ 𝑅prox > 0 should
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Figure 6.1: Adaptive trust region approach restricts the search within the cross-patterned region
allowing the optimization algorithm to focus near high fidelity solutions.

gradually decrease to allow for a gradual transition from exploratory to exploitative search. In this study,

𝑅trust is set to be proportional to 𝑅prox.

Figure 6.1 shows the change in the permissible region during the optimization process. Areas with a

horizontal hatch pattern represent the region defined by 𝑅prox, whereas the region beyond the trust region is

delineated by an inclined hatch pattern. The permissible search region is demarcated with a square-shaped

hatch pattern. In the initial cycle, exploration is emphasized by having a large 𝑅trust and a large 𝑅prox. In

intermediate cycles, both radii have decreased to improve exploitation. During the final cycles, both regions

are relatively small to maximize exploitation.

Ideally, the rate of the reduction in 𝑅trust and 𝑅prox can be controlled by a single user-defined parameter.

Although different functions can be used, an exponentially decreasing function is preferred in this study:

𝑅prox = max
(
𝑅ini

0

(
1 − FE − 𝑟iniFEmax

FEmax (1 − rini)

) 𝜏R

, 𝜖prox

)
, (6.1)

𝑅trust = 𝑟R2R · 𝑅prox, (6.2)

in which 𝑅ini
0 is the minimum distance between two solutions after generating initial high-fidelity solutions

(see Section 6.1.2.1), FEmax is the solution evaluation budget, FE is the number of evaluations so far,

𝑟init is the fraction of the evaluation budget that was used for the initial high-fidelity solution, and 𝜏R
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specifies the reduction rate of 𝑅prox. 𝜖prox > 0 is the lower bound for the distance between two solutions.

𝜖prox = 10−6 | |𝑿 (𝑈) − 𝑿 (𝐿) | |2, which is 10−6 times the euclidean distance of the upper minus the lower bound

for each variable. This limit was defined solely to prevent having multiple infill solutions on or extremely

close to each other. Besides, it ensures 𝑅trust > 0. A parameter study is performed in Section 6.1.3 to find

a good value for 𝜏𝑅. Notably, 𝑅prox and 𝑅trust can be embedded into any optimization algorithm by adding

constraints that declare solutions as infeasible when they are in the proximal or outside of the trust region.

6.1.2.3 Management of the Surrogate Model

PSA-EA employs an independent metamodel for each objective function. It utilizes the DACEFIT mod-

ule [55], a Kriging-based metamodel provided by the Matlab Surrogate Model Optimization Toolbox. The

module allows setting the regression type, correlation function, and the initial length scale(s) 𝜃 of the corre-

sponding kernel. The regression can either be constant, linear, or quadratic. The quadratic option is excluded

since it requires a large number of high-fidelity solutions, leaving two options for the regression type. For the

correlation, an exponential, generalized exponential, gaussian, linear, spherical, or cubic spline function can

be used (six options). The bounds for 𝜃 were set to [10−6, 102] for which the candidate initial values are set

to [10−5, 10−4, . . . , 100] (six options). Since the accuracy of DACEFIT depends on the proper selection of

the metamodel parameters, the best parameter setting should be found for each objective at the beginning of

each cycle. Each parameter configuration results in a different metamodel. From this perspective, PSA-EA

can be regarded as a method that employs an ensemble of metamodels.

For the first cycle, the set of candidate metamodels includes all settings for the parameters of the

metamodel, resulting in 2× 6× 6 = 72 metamodels. Each candidate metamodel is trained and assessed, and

the best one is selected for the current cycle. A fraction of the worst settings for the metamodel parameters

is discarded such that in the last cycle, only two parameter settings are tested. For the case when there are

72 candidate solutions in the beginning, this fraction is:

𝑟drop =

(
2
72

) (1/𝑁cycle−1)
. (6.3)

This reduction in the number of candidate metamodels significantly decreases the training and assessing

time by excluding metamodels unlikely to be a suitable in future.
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A common strategy to assess a metamodel is to divide the existing high-fidelity solutions into training

and testing data, e.g. 80% for training and 20% for testing, as performed by [136]. However, since the

number of high-fidelity solutions is very limited, this study suggests using stratified 𝑛-fold cross-validation,

according to which all existing solutions are used as training and testing sets. Each time one solution is

excluded from the training set, and its value is predicted using the trained metamodel. This process continues

until the predicted values of all solutions are calculated. Having the actual and predicted values of each

solution, the goodness of each metamodel can be assessed. The best-found metamodel is then selected and

retrained using all available solutions as there is no more need for test data.

There are several measures for comparing the goodness of a metamodel. The most commonly used one

[104] is Mean Squared Error (MSE):

𝐸MSE =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑓 (𝒙𝑖) − 𝑓 (𝒙𝑖)

)2
, (6.4)

in which 𝑛 is the number of available solutions and 𝑓 (𝒙𝑖) and 𝑓 (𝒙𝑖) are the predicted and real values,

respectively. This study, however, favors a goodness measure that takes only the rank of solutions into

account after they are sorted according to their function values. Jin et al. [293] proposed a number of such

measures based on the difference between the predicted and actual rank of (selected) solutions after they have

been sorted according to their predicted and actual values. This study suggests a more intuitive measure,

called selection error probability (SEP). SEP considers all pairwise comparisons of solutions and sums up

the number of times that comparing the predicted values has resulted in incorrect identification of the better

solution:

𝐸SEP =
1

0.5𝑛(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑞(𝒙𝑖 , 𝒙 𝑗), (6.5)

where

𝑞(𝒙𝑖 , 𝒙 𝑗) =


1, if

(
𝑓 (𝒙𝑖) − 𝑓 (𝒙 𝑗)

)
( 𝑓 (𝒙𝑖) − 𝑓 (𝒙 𝑗)) < 0,

0, otherwise.

The number of possible pairs with 𝑛 solutions is 0.5 · 𝑛 · (𝑛 − 1). For each pair 𝑞(𝒙𝑖 , 𝒙 𝑗) returns 1 if the

comparison of two solutions using their predicted values is not the same as using their true values, otherwise

it returns 0. A metamodel with a smaller 𝐸SEP is considered as a better one.
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Figure 6.2: Selection Error Probability: Pairwise comparison between high-fidelity and prediction
values

Figure 6.2 illustrates how SEP works in a common situation in model-based optimization. The true

function values are shown in blue and the predictions in red. The absolute metamodel error is the integral

of the difference between both functions. The optimization algorithm aims to minimize 𝑓 (𝑥) (True) by

using 𝑓 (𝑥) (Prediction). The optimization algorithm will make pairwise comparisons. For instance, if

point 𝑥1 and 𝑥2 are compared, then 𝑓 (𝑥1) > 𝑓 (𝑥2) and 𝑓 (𝑥1) > 𝑓 (𝑥2). The metamodel does predict the

domination relation correctly. Contrarily, when 𝑥1 and 𝑥3 are compared, 𝑓 (𝑥1) > 𝑓 (𝑥3), but 𝑓 (𝑥1) < 𝑓 (𝑥3).

The metamodel prediction leads to an incorrect comparison result. Considering minimizing using this

metamodel the algorithm will favor solution 𝑥1 over 𝑥3 which is indeed wrong because 𝑓 (𝑥1) > 𝑓 (𝑥3). This

measures intuition and mimics the decisions of an evolutionary algorithm during optimization.

6.1.2.4 Optimization of the Approximate Function(s)

After selecting and training the best metamodel, an evolutionary algorithm is employed to perform optimiza-

tion of the approximate function(s). In principle, any black-box optimization method can be used for this

purpose. In PSA-EA:

• The Covariance Matrix Adaptation Evolution Strategy (IPOP-CMA-ES) with restarts [294] is used

for single-objective problems. Since new solutions undergo high-fidelity evaluation at the end of each

cycle, IPOP-CMA-ES is executed multiple times consecutively, generating one new point each time.

This new solution does not affect the metamodel, but it changes the optimization problem landscape
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since each new point modifies the permissible region defined by 𝑅prox and 𝑅trust. At the same time,

𝑅prox and 𝑅trust are updated whenever a new solution is generated.

• The recent unified version of Non-Dominated Sorting Genetic Algorithm III (NSGA-III) [279] is

used for multi-objective problems. In this case, the solutions obtained by optimization are candidate

solutions, from which some solutions are selected for high-fidelity evaluation. As a constraint, each

solution must be in 𝑅trust, but not be in 𝑅prox. The selection procedure is similar to NSGA-III except

that it uses a clearing strategy. Existing points are assigned to reference lines. The solution assigned

to the least crowded reference line is selected for high-fidelity evaluation, and all points within the

proximity region of this solution are cleared. If another point must be selected, but all points have

been cleared, NSGA-III is run again after applying the effect of recent solutions on the permissible

region. For practical problems, the user may manually select new points from candidate solutions.

Since the surrogate provides a computationally cheap prediction for a solution value, the budget of

5000𝐷
√
𝑁𝐹 of approximate evaluations are provided per each infill solution, in which 𝐷 and 𝑁𝐹 are the

numbers of decision parameters and the objectives in the problem. This setting is based on numerical

experiments conducted by the authors.

6.1.2.5 Flowchart

Figure 6.3 presents the flowchart of PSA-EA. After generating initial high-fidelity solutions, an exhaustive

search is performed to find the best metamodel. Then, a set of infill solutions is generated by optimizing

the approximate function(s). The new infill solutions are used to update the metamodel(s), and this process

continues until the budget for high-fidelity evaluation is depleted.

6.1.3 Descriptive Experiments

This section performs a few descriptive experiments to demonstrate the effects of different components of

PSA-EA. For this purpose, four test problems were selected:

• Modified Rastrigin function, a highly multimodal function with a symmetric bowl-shaped global

structure.
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Figure 6.3: Flowchart of PSA-EA.
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• Schwefel function, a multimodal function in which good local minima lie close to the corners of

search space. Approaching any corner means going away from the rest of good local minima.

• shifted Ackley function, which shows a sudden reduction in the objective function value when ap-

proaching the global minimum.

• ZDT3 function, a two-objective test problem with a disjoint Pareto front.

Each problem is optimized 50 times independently. For single-objective problems, the performance

indicator measures the difference between the best value found by the method and the global optimum value

( 𝑓best − 𝑓 ∗). For multi-objective problems, the performance indicator is hypervolume ratio (HVR), which is

the ratio of the measured hypervolume of the non-dominated solutions divided by the hypervolume of the

true Pareto front. Therefore, 0 ≤ HVR ≤ 1. The reference point (𝑿ref) for the calculation of HV is calculated

as follows:

𝑿ref = 𝛼ref (𝑿nadir − 𝑿ideal) + 𝑿ideal, (6.6)

in which 𝛼ref > 1. For a reasonable value of 𝛼ref , 𝐻𝑉𝑅 ≈ 1 means that the final solutions could provide

a good approximation of the Pareto front, regardless of the shape of the problem and the nadir points. HVR

is known to be a Pareto-compliant performance indicator [295]. By default, this study sets 𝛼ref = 1.1, as

recommended by [296].

6.1.3.1 Effect of 𝑅prox

In PSA-EA, a larger 𝜏𝑅 makes a faster transition from exploration to exploitation. 𝜏𝑅 = ∞, for example,

suddenly reduces 𝑅prox to 𝜖prox, which actually suppress the effect of 𝑅prox concept. This section analyzes the

effect of 𝜏𝑅 on the performance of PSA-EA. The budget of high-fidelity solutions is set to 20𝐷, and different

values for fraction of initial high-fidelity solutions (𝑟ini) and 𝜏𝑅 are tried. For this experiment, 𝑟R2R is set to

a very large value to suppress the effect of 𝑅trust. Furthermore, only one solution is generated at each cycle.

Figure 6.4 illustrates the performance metric for each setting. As it can be observed:
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(a) Modified Rastrigin Problem.
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(b) Schwefel Problem.
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(c) Shifted Ackley Problem.
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(d) ZDT3 Problem.

Figure 6.4: Effect of 𝑟ini and 𝜏𝑅 on the performance of PSA-EA on each test problem when
FEmax = 100 and 𝑁cycle = 100.

• In general, a proper 𝜏𝑅 can significantly improve final results. This is more detectable for Rastrigin,

Schwefel, and Ackley functions. 𝜏𝑅 = 2 results in significantly better final solutions, when compared

to 𝜏𝑅 = ∞ or 𝜏𝑅 = 0.5.

• A gradual reduction of 𝑅prox (for example, 𝜏𝑅 = 2 ) improves the robustness of the method to the

fraction of initial solutions (𝑟ini).

• When 𝜏𝑅 = ∞, exploration is limited to the initialization phase. For a small value of 𝑟ini, this results in

a more considerable performance drop compared to 𝜏𝑅 = 2, in which exploration diminishes gradually.

For the same reason, a higher 𝑟ini can be beneficial when 𝜏𝑅 →∞ since it improves exploration.

• Suppressing the idea of 𝑅prox is advantageous for ZDT3 problem, possibly because of the simplicity of

the objective functions in this problem or the fact that in multi-objective optimization, some diversity
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is automatically preserved in the selection process. Nevertheless, 𝜏𝑅 = 2 is only a little worse than

𝜏𝑅 →∞.

Consequently, a gradual reduction of 𝑅prox, motivated by a gradual shift from exploration to exploitation,

can improve both the quality of final solutions and robustness to the fraction of initial solutions.

6.1.3.2 Effect of 𝑁cycle

A smaller 𝑁cycle is desirable from an application point of view since it allows for the parallel evaluation of

new infill solutions; however, it degrades the optimization performance by postponing the exploitation of

true values of new infill solutions. Therefore, it is practically important to investigate the sensitivity of a

surrogate-assisted method to this parameter. This section explores whether a gradual shift from exploration

to exploitation can contribute to the performance of PSA-EA when 𝑁cycle is limited. For this experiment,

𝑟R2R is set to a very large value to suppress the effect of 𝑅trust. Figure 6.5 demonstrates the median, the first

quartile (Q1), and the third quartile (Q3) of 𝑓best − 𝑓 ∗ or HVR as a function of 𝑁cycle when 𝜏𝑅 = 2. It reveals

that:

• For the single objective problems, the performance substantially improves by increasing 𝑁cycle up

to 𝑁cycle = 5. After that, the rate of improvement diminishes, and for 𝑁cycle > 16, no significant

improvement was obtained by increasing 𝑁cycle. Knowing this trade-off makes decision-making easier

on the value of 𝑁cycle by considering the available computing resources.

• For the ZDT3 problem, 𝑁cycle has no detectable effect on the performance. This demonstrates that

the initial surrogate model, which is trained using the initial 40 solutions, is sufficiently accurate, and

new infill solutions do not change the model much. This observation explains why for this specific

problem, a gradual transition from exploration to exploitation was not beneficial in Section 6.1.3.1.

6.1.3.3 Effect of 𝑟R2R

𝑅trust may enforce exploitation by limiting the search to solutions near the existing high-fidelity solutions.

To check the effect of 𝑅trust, this section optimizes four test problems using different values of 𝑟R2R. For
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Figure 6.5: Effect of 𝑁cycle on the performance of PSA-EA (𝜏𝑅 = 2, 𝑟ini = 0.4) for the corresponding
test problem.

this experiment, 𝜏𝑅 = 2, 𝑁cycle = 20, and FEmax = 100. Figure 6.6 shows Q1, Median, and Q3 of the

performance indicator. As observed:

• for ZDT3 and Schwefel problems, a large value for 𝑟R2R is advantageous. For these two problems,

any 𝑟R2R ≥ 4 is a reasonable choice.

• No considerable effect of 𝑟R2R can be detected for the shifted Ackley and modified Rastrigin problems.

The results of this section suggest that the default value of 𝑟R2R should be equal or greater than four;

however, no upper limit can be defined at this stage. This observation can be explained as follows: A

smaller 𝑟R2R results in a smaller difference between the predicted and the actual values of new infill solutions

because it restricts the search to the neighborhood of existing high-fidelity solutions. On the other hand, this
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Figure 6.6: Effect of 𝑟R2R on the performance of PSA-ES when 𝜏𝑅 = 2, 𝑁cycle = 20, and FEmax =

100.

restriction limits the potential improvement from new infill solutions since farther solutions are disregarded

even though the updated surrogate model predicts a good value for them.

6.1.4 Numerical Comparison

This section compares the performance of PSA-EA with two of the recently proposed surrogate-assisted

optimization methods:

• Surrogate Optimization of Computationally Expensive Multi-Objective (SOCEMO) [297], a surrogate-

assisted optimization method for multi-objective problems.

• Mixed Integer Surrogate Optimization (MISO) [227], a surrogate-assisted optimization method for
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mixed-variable single-objective problems.

One main reason for selecting these methods for comparison is the availability of their source code

and documentation [298], which facilitates the simulation of arbitrary test problems. All parameters of

MISO/SOCEMO are set to their default values, including the number of initial samples, which is set to

2𝐷 + 1. To the best of the author’s knowledge, no option to control the number of cycles in these methods

is provided. To ensure a fair comparison, the same number of initial samples is used for PSA-ES. Moreover,

two values for 𝑁cycle are considered for PSA-EA:

• 𝑁cycle = FEmax(1− 𝑟ini), in which only one solution is generated and evaluated at each cycle. It allows

for a fair comparison with MISO/SOCEMO. This variant of PSA-EA is denoted by PSA-EA(S).

• 𝑁cycle = 8, in which multiple solutions are generated in each cycle and evaluated in parallel. This

practically demanding variant is denoted by PSA-EA(P).

Four single-objective and six multi-objective test problems are employed in this study for numerical

evaluation and comparison. The single-objective test problems are some of the most commonly used test

problems in the global optimization literature. This study uses slightly modified variations of these problems

mainly by shifting the fitness function to relocate the location of the global optimum. The family of ZDT

[253] and DTLZ [257] test problems are widely used in the multi-objective optimization literature. A few of

them were excluded either because of excessive simplicity (ZDT1 and ZDT2) or similarity to other selected

problems. The mathematical definitions of the customized test problems used in this study are provided in

the supplementary document.

These test problems are optimized for 𝐷 = 5 and 𝐷 = 10, when FEmax = 10𝐷. This setting is based

on the types of practical problems that motivated this study. For each problem, 50 independent runs are

performed and the performance indicator, which was explained in Section 6.1.3, is reported for each method.

By default, 𝛼ref = 1.1 (see Equation 6.6); however, for some more difficult problems, this setting may result

in HVR ≈ 0 for the tested methods. If so, this indicator may not determine which method has performed

better. Alternatively, a greater 𝛼ref was chosen such that at least one method can reach HVR ≥ 0.5.

Wilcoxon rank-sum test with significance level 𝛼 = 0.01 is employed to check whether there is a

statistically significant difference between the performance of PSA-EA and that of the other tested method

(MISO for single-objective and SOCEMO for multi-objective problems). Table 6.1 presents the performance
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Table 6.1: Median of the performance indicator ( 𝑓best − 𝑓 ∗ for single-objective problems and HVR
for multi-objective problems) and the outcome of the statistical test for the performance of the
tested methods for 𝐷 = 5. 𝛼ref defines the selected reference point for calculation of HRV.

PID Function 𝑁obj 𝛼ref
MISO or PSA-EA(S) PSA-EA(P)

SOCEMO
1 M-Rastrigin 1 − 7.43 3.32 (+) 3.92 (+)
2 Schwefel 1 − -1358 -1569 (+) -1366 (=)
3 M-Ackley 1 − 6.31 3.36 (+) 6.37 (=)
4 M-Rosenbrock 1 − 110 250 (−) 512 (−)
5 ZDT3 2 1.1 0.507 0.882 (+) 0.883 (+)
6 M-ZDT4 2 7 0 0.597 (+) 0.522 (+)
7 ZDT6 2 3 0.485 0.535 (=) 0.435 (=)
8 M-DTLZ1 3 20 0.549 0.206 (−) 0.004 (−)
9 DTLZ2 3 1.1 0.686 0.888 (+) 0.886 (+)
10 DTLZ6 3 1.1 0.131 0.649 (+) 0.632 (+)

CPU time (minute) 4.7 51 36

Table 6.2: Median of the performance indicator ( 𝑓best − 𝑓 ∗ for single-objective problems and HVR
for multi-objective problems) and the outcome of the statistical test for the performance of the
tested methods for 𝐷 = 10. 𝛼ref defines the selected reference point for calculation of HRV.

PID Function 𝑁obj 𝛼ref
MISO or PSA-EA(S) PSA-EA(P)

SOCEMO

1 M-Rastrigin 1 − 19.64 6.40 (+) 8.52 (+)
2 Schwefel 1 − -2644 -3088 (+) -2619 (=)
3 M-Ackley 1 − 8.37 4.31 (+) 8.69 (=)
4 M-Rosenbrock 1 − 907 627 (=) 1249 (−)
5 ZDT3 2 1.1 0.077 0.936 (+) 0.935 (+)
6 M-ZDT4 2 25 0.147 0.668 (+) 0.535 (+)
7 ZDT6 2 5 0.546 0.609 (+) 0.577 (=)
8 M-DTLZ1 3 60 0 0.648 (+) 0.421 (+)
9 DTLZ2 3 1.1 0.493 0.830 (+) 0.837 (+)
10 DTLZ6 3 1.1 0.069 0.718 (+) 0.720 (+)

CPU time (minute) 11.2 449 180

indicator for both methods when 𝐷 = 5. It also provides the CPU time for each method to optimize all the

problems once. The signs +, =, and − denote that PSA-EA(S) or PSA-EA(P) is statistically better, equal,

and worse when compared with SOCEMO/MISO, respectively. The same data for 𝐷 = 10 are provided in

Table 6.2. The obtained results reveal that:

• PSA-EA(S) outperforms MISO/SOCEMO for seven problems when 𝐷 = 5, but it is outperformed
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by MISO/SOCEMO for two problems. For 𝐷 = 10, PSA-EA(S) outperforms MISO/SOCEMO in

nine problems but it is not outperformed in any problem. This observation demonstrates that the

superiority of PSA-EA(S) over MISO/SOCEMO intensifies for problems of higher dimensions. For

example, PSA-EA(S) is outperformed by MISO/SOCEMO for 5-D M-DTLZ1, but it excels for 10-D

version of this problem. In particular, PSA-EA(S) significantly outperforms MISO/SOCEMO for

M-Rastrigin, M-Ackley, ZDT3, ZDT4, and DTLZ6.

• Compared to MISO/SOCEMO, PSA-EA(P) still excels in 11 problems and falls behind only in three

problems.

• For some problems, a detectable performance drop can be observed for PSA-EA when the number

of cycles is reduced to eight. In contrast, there is no considerable difference between PSA-EA(S) and

PSA-EA(P) for PID=5, 9, and 10. Besides, both variants of PSA-EA could reach a relatively high

HVR with the default value of 𝛼ref . This implies that for these problems, even the initial surrogate

model could predict the rank of solutions with good reliability. An efficient surrogate-assisted method

is an ideal tool for optimizing such problems.

• Neither of the tested methods could provide a good approximation of the Pareto front of M-DTLZ1,

even though the difficulty of the original problem was moderated; therefore, a large deviation from

the recommended value of 𝛼ref was necessary to obtain discriminating values for HVR.

• The CPU time for PSA-EA variants are much higher than that of MISO/SOCEMO; however, for

problems in which each solution evaluation may take a few hours or more, the computation time of

PSA-EA is still negligible.

• Compared to MISO/SOCEMO, PSA-EA(P) has an important practical advantage: It can submit the

new infill designs for external evaluation in a group of the desired size. Based on the author’s

evaluation, MISO/SOCEMO does not have this flexibility and requires the evaluation of new infill

solutions to proceed. This is a critically important feature when it comes to practical problems.
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6.1.5 Application: Cylinder Head Water Jacket Design

In this work, PSA-EA is employed to optimize the design of an engine cylinder head. In the following, the

problem is described, the optimization procedure explained, and finally, the obtained results are discussed.

6.1.5.1 Problem Description

The problem has eight design parameters, which are the area of four inlets and four outlets of the cooling

water jacket. These parameters are normalized with respect to the largest possible section. This way each

area variable takes a value within (xi ∈ [0, 100], i = 1, 2, . . . , 8). In the base design, all inlets and outlets

are set to their maximal size, which means 𝑥𝑖 = 100 for all 𝑖 = 1, 2, . . . , 8. Two conflicting objectives were

defined – 𝑓1(𝑥) to be maximized and 𝑓2(𝑥) to be minimized. Each design evaluation requires a detailed CFD

simulation which was performed by the engineering team at Ford. The CFD model consists of 2.4 million

volume cells, 13.7 million interior faces, and 11.4 million vertices. The CFD analysis terminates after 4,000

iterations. Residuals such as continuity and energy are monitored but not used as convergence criteria.

Each design analysis takes about one hour using 32 CPUs. The optimization budget is limited to 61 design

evaluations to complete the optimization task in a reasonable time. Furthermore, two different boundary

conditions are considered for CFD simulation, resulting in two separate problems. They are named B34 and

B38 here. These problems have no constraints except the bounds of the search range.

6.1.5.2 Results

Two optimization approaches are tested on problems B34 and B38 in parallel and independently. In the first

approach, a commercial software is utilized by engine design engineers for surrogate model training and

optimization. The selection of new infill solutions, however, is performed manually by the engineering team.

This approach is denoted by CS (Commercial Software).

In the second approach, PSA-EA is employed by the research team at Michigan State University (MSU)

for design optimization. For PSA-EA, the selection of new infill solutions is performed automatically by the

algorithm, except for the final two cycles, in which the engineering team acted as decision-makers to choose

preferred solutions from PSA-EA results. At the end of each cycle, three to five new solutions obtained by

PSA-EA were sent to the engineering team at Ford for evaluation.
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Figure 6.7: Predicted values of new solutions and their true values after CFD simulation for both
methods, both problems, and both objectives.

The CS approach was run independently by the engine design engineers, while PSA-EA was run at MSU

with assistance on solution evaluation. It is worth noting that at the end of the ninth cycle, the search range

for decision variables was manually reduced based on the range of non-dominated solutions.

Figure 6.7 shows the predicted values of new infill solutions, as well as their true values after CFD

simulation for both methods (CS and PSA-EA) and both problems (B34 and B38). All obtained solutions

by both methods are illustrated in Figure 6.8. The region of interest is focused in Figure 6.9, which also

demonstrates the final solutions selected by the engineering team for fabrication and experimental testing.

Based on the obtained results, the following conclusions can be made:

• PSA-EA and CS generate solutions that dominate most initial infill solutions (Figure 6.8). This can be

considered a checkpoint for the validity of the optimization process, even when the evaluation budget

is highly limited.
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Figure 6.8: All generated solutions by PSA-EA and CS for problems 𝐵34 and 𝐵38.               
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Figure 6.9: Generated solutions in the vicinity of the interest region for problems 𝐵34 and 𝐵34.
The base and the selected designs for fabrication are demonstrated by arrows.

• The selected solutions for fabrication are from PSA-EA results for problem B34 and from CS results

for problem B38 (Figure 6.9). For both solutions, 𝑓2 is slightly greater than 10.

• The prediction error is initially high for both methods and both objectives. The error remains high

for the CS method until the end but gradually reduces for the PSA-EA method with iteration (Figure

6.7). It is remarkable that the proposed approach, starting with wide discrepancies between true and

surrogate model function values, match so well in a few iterations. The use of the trust region method

and the overall surrogate modeling approach make this reliable and remarkable correlation. This is

more detectable for 𝑓2, for which the prediction error becomes almost zero in final cycles when using

PSA-EA. This advantage of PSA-EA is presumably the result of a better exploration of promising

regions in early cycles and better exploitation in the final cycles, and the manual reduction of the

search range.
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• Compared with the base design, the selected solutions show a maximum of 88% and 114% improve-

ment of 𝑓1 for problems B34 and B38, respectively. This is a piece of evidence for the superiority of

design by optimization in comparison with intuition-based design methodologies.

• One interesting and unexpected feature of the selected design for problem B34 is that for this design, the

size of one of the inlets/outlets is close to zero (𝑥6 = 6.27). This unexpected observation demonstrates

the possibility of using optimization to develop innovative knowledge about key features of optimal

solution(s). Such information can be used in earlier stages of design to determine the number of

inlets/outlets or even their locations. Although simultaneous optimization of different features is more

challenging than optimization of only sizes of inlets/outlets, it is predictably much more rewarding as

well.

• For this problem, considering the soft constraint 𝑓2 ≤ 10 from the beginning could have been

advantageous. It would automatically concentrate the search to the region of interest in the 𝑓 -space;

however, such information about the upper bound of 𝑓2 may not have been known beforehand and

may have resulted from the non-dominated solutions over cycles.

Although both methods were tested independently, the CS approach was run by the design engineering

team at Ford, who knew the designers’ region of interest. This significant privilege helped to introduce a

focus in the search to a small region, which provides more infill solutions for that region and improves the

accuracy of the metamodel. For the PSA-EA, such information was provided and used only for the last two

cycles, when the exploration phase was almost completed.

6.1.6 Summary of Section 6.1

In this work, we have developed a proximity-based surrogate-assisted evolutionary algorithm (PSA-EA) for

single and multi-objective optimization of computationally expensive problems. PSA-EA selects new infill

solutions according to their predicted fitness (exploitation) but imposes a constraint on their diversity to

substantially improve the accuracy of the surrogate model for future cycles (exploration). It follows a gradual

transition from exploration to exploitation by reducing the proximity radius over time. The importance of

such a gradual transition has been numerically demonstrated, especially when the number of optimization

cycles is limited.
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The proposed surrogate-assisted method has been applied to optimize the cylinder head water jacket

design. Besides the optimization procedure itself, it demonstrates what optimization in practice may look

like. Considerations such as the existence of two different problems with similar goals, a reference design

always compared to during optimization, solution evaluations being carried out via E-Mail communication,

and introducing a soft constraint toward the end of the optimization run. Altogether, this should give the

reader of this dissertation an idea of how diverse optimization in practice is and how such challenges can be

addressed.

6.2 Case Study II: Electric Machine Design

6.2.1 Introduction

Electric machine design is an iterative process where each iteration focuses on improving the design’s

quality. Machines are complex systems where many variables, geometric and physical, interact non-linearly

and affect the machine’s performance. These performance measures can include evaluating electromagnetic,

thermal, and structural performances, making electric machines a multi-physics MOP. The need for design

optimization is mainly application-driven, and since the field of applications for electric machines is large,

there is much scope for improvement.

Research efforts in machine design optimization have been focused on improving solution accuracy and

quality while reducing the optimization run-time. For this purpose, optimization algorithms and machine

evaluation tools have been explored extensively. Some of the early electric machine design optimization

studies include using pattern search and sequential unconstrained minimization techniques to optimize

induction motor [299, 300]. However, it was demonstrated that evolutionary algorithms (EAs) are superior

to point-by-point methods in finding global optimums for complex systems like electric machines [301].

Consequently, the use of EAs has increased with time in the optimization of machine design [302, 303, 304,

305, 306, 307]. Since the electric machine is a nonlinear system, finite element analysis (FEA) is the most

preferred method for their evaluation. Examples of optimization studies where EAs were combined with FEA

can be found [308, 309]. Since EAs require many function evaluations to converge to the global optimum,

using FEA to evaluate each case during optimization requires substantial computational resources. In this

regard, researchers have explored techniques, including surrogate-assisted optimization methods, to substitute
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FEA for reducing computation time; however, at the expense of solution accuracy [310, 311, 312, 313, 314].

For example, the authors used a combination of a second-order response surface model (RSM) and GA

to optimize the magnet shape and placement in the rotor of an interior permanent magnet (IPM) machine

to achieve the largest constant power speed region (CPSR) [310]. The second-order RSM was used to

predict d-axis and q-axis inductances and magnet flux linkage of an IPM machine. Similarly, a surrogate-

based optimization approach using multi-objective differential evolution (MODE) algorithm was employed

to minimize active material mass and total losses of an axial flux PM (AFPM) machine at rated operation

[313]. In another study, a local refinement strategy to improve a Pareto-optimal design further after the

optimization terminated was presented [315]. Results showed that a posteriori local search, even with fewer

function evaluations, produced similar results to those by an approach solely relying on global optimization.

Although researchers have explored different optimization algorithms and methods to evaluate objective

functions, constraint handling in literature for electrical machine optimization is inefficient. In optimizing

electric machines, constraints define feasible regions in the design and objective space [316]. Typically, every

machine optimization problem involves some geometric constraints that must be respected to generate feasible

designs. Unlike objective functions, these geometric constraints can be quickly evaluated through analytical

expressions. A procedure to identify the geometric feasibility of a candidate solution can be included in

the optimization algorithm itself. A common approach to handle geometrically infeasible solutions is to

discard them and rely on random initialization of variables and repeat this process until a feasible solution

has been found [317]. However, random sampling becomes relatively inefficient as the number of geometric

variables and constraints increases, which is eventually reflected in the quality of Pareto-optimal solutions

when the computational resources are limited. To tackle this problem, we propose an embedded optimization

problem where the information from constraint violation is used to repair geometrically infeasible solutions

and improve the Pareto-optimal front.

The main contributions of this work are the following:

• The proposal of a repair operator ensuring the feasibility of designs. This operator exploits inexpen-

sive constraints, e.g., geometric constraints calculated using analytical expressions, while respecting

manufacturing accuracy limitations.

• A demonstration of improvement in quality of the Pareto-optimal solution set by integrating a repair
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operator into the optimization cycle. Additionally, a performance validation of the proposed surrogate

assistance for predicting the computationally expensive objectives.

• A detailed physical explanation of Pareto-optimal solutions and recommendations for selecting pre-

ferred solutions based on two different approaches: (1) a domain specific a posteriori multi-criteria

decision-making (MCDM) method which involves machine expertise, and (2) a trade-off analysis of

the Pareto-optimal set.

The remainder of this case study is structured as follows. Section 6.2.2 discusses the formulation of

the optimization problem. Section 6.2.3 explains the proposed optimization method, which exploits the

computationally inexpensive constraints by introducing a repair operator and the computationally expensive

objective functions by using surrogate models. The impact of the proposed repair operator and surrogate

assistance on the convergence of the algorithm is discussed in Section 6.2.4. A detailed discussion about

Pareto-optimal solutions and the selection of preferred electric machine designs is also included. Finally,

conclusions are drawn in Section 6.2.5.

6.2.2 Electric Machine Design and Optimization Problem Formulation

The optimization of electrical machines typically starts with the selection of a machine template. Based

on machine performance requirements, objective functions are formulated, followed by the selection of the

design variables, variable ranges, and constraints. Average torque, torque pulsations, losses, and efficiency

are some of the most common objective functions used in electric machine design. Designers usually select

variables based on the domain knowledge and then proceed to sensitivity analysis to keep only the most

significant variables during optimization [318]. Variable ranges can be selected arbitrarily or based on the

machine designer’s experience. Since the search space is generally high dimensional, a proper definition of

geometric constraints can ensure the reliability of solutions.

6.2.2.1 Selection of Machine Topology, Objective Functions, and Evaluation Method

Permanent magnet synchronous machines (PMSMs) are known for their high torque density and efficiency.

They are extensively used in hybrid and electric vehicle applications. In this work, an electrical machine
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Table 6.3: Parameters of IPM machine used for optimization.

Parameters Values Parameters Values

Mechanical power 69 kW Turns per coil 11
Rated speed 3000 rpm Slot/ pole/ phase 2
Peak current 177 A Slot fill factor 0.46
Stator outer diameter 264 mm Air-gap 0.75 mm
Rotor outer diameter 160.4 mm Stack length 50.8 mm
Average torque 214.8 Nm Magnet type NdFeB
Torque pulsations 36.2 Nm DC-link voltage 650 V

(a) 2D Model

Rotor yoke

Stator yoke

Stator slots and

copper windings

Permanent magnets

Shaft

(b) Reduced Model

Figure 6.10: IPM machine used for optimization.

used in the 2010 Toyota Prius is chosen for optimization. The machine is a 3-phase, 48-slot, 8-pole IPM

machine with a single layer of a V-shaped magnet. Details of the machine parameters are given in Table 6.3

and a visualization is shown in Figure 6.10a and 6.10b [319]. Since IPM machines are highly nonlinear,

FEA is chosen as the objective function evaluation tool. Because FEA is time-consuming, periodicity is

exploited, and only 1/8th of the model is considered for evaluation. The goal is to maximize average torque

while minimizing torque pulsations, where pulsations are defined from peak to peak as shown in Figure 6.11.

6.2.2.2 Definition of Feasible Search Space

The following geometric variables are kept constant as in the original 2010 Prius motor:

• Inner diameter (ID) and outer diameter (OD) of stator and rotor

• Air-gap length between rotor and stator

• Stack length of the machine
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Figure 6.11: Torque profile of reference design at rated operating conditions.

• Number of turns per coil

• Slot fill factor and maximum current density in stator slot

Next, a sensitivity analysis is performed to identify the 10 most significant variables shown in Figure 6.12.

Out of the 10 variables, six define magnet shape and placement in the rotor, while four control slot size and

shape. Variable ranges are defined to be within 20% variation from the reference design. All variable values

are limited to have only two decimal places because of manufacturing accuracy limitations. Variable values

for the reference design (𝑥 (ref) ) along with lower (𝑥 (𝐿) ) and upper bounds (𝑥 (𝑈) ) are given in Table 6.4. A total

of 10 geometric constraints are considered for the optimization problem. The geometric constraints allow

a quick check of a design for geometric feasibility without running the FEA simulation. The constraints

are defined by having domain knowledge in mind, which is vital for a good torque profile and a typical

manufacturing tolerance of ±0.05 mm.

6.2.2.3 Selection of Operating Point for Optimization

The performance of an IPM machine directly depends on the speed and torque requirements. Figure 6.13

shows the efficiency contour map of the 2010 Prius motor with a dc-link voltage of 650 V [2]. The peak

torque rating of the machine stays constant until a particular speed called the base speed of the machine,

which is also very close to the rated speed. PMSMs are famous for their torque density, and therefore, their

operation at rated speed is of high importance. To increase the efficiency of PMSMs in the speed region up
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Table 6.4: Values of geometric variables used for optimization.

𝑥𝑑 Variable Unit 𝑥 (ref) 𝑥 (𝐿) 𝑥 (𝑈)

𝑥1 Height of rotor pole cap mm 9.56 7.65 11.47
𝑥2 Magnet thickness mm 7.16 5.73 8.59
𝑥3 Magnet width mm 17.88 14.30 21.46
𝑥4 Angle between magnets degree 145.35 116.28 174.42
𝑥5 Bridge height mm 1.99 1.59 2.39
𝑥6 Q-axis width mm 13.9 11.12 16.68
𝑥7 Slot height mm 30.9 24.72 37.08
𝑥8 Slot width mm 6.69 5.35 8.03
𝑥9 Height of slot opening mm 1.22 0.98 1.46
𝑥10 Width of slot opening mm 1.88 1.50 2.26
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Figure 6.12: Geometric variables used for optimization

to the base speed, they are operated in a way to minimize the excitation current fed to stator copper windings

and, therefore Joule losses, while meeting the torque requirements. This specific mode of operation is called

maximum torque per ampere (MTPA) operation. For the optimization problem formulation, the rotational

speed of the rotor and the excitation angle is kept equal to the values of the reference design at rated MTPA

operation. Moreover, it is worth noting that the excitation current is not kept constant. The slot fill factor

denotes the proportion of the slot area filled by copper windings. As the slot fill factor is kept constant in

contrast to the slot cross-section, it results in different current ratings for different designs.
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Figure 6.13: 2010 Prius motor efficiency contours for 650 Vdc [2].

Mathematically, the 10-variable (𝐷 = 10) MOP is now defined as:

Maximize Average Torque(x),

Minimize Torque Pulsation(x),

subject to 𝑔 𝑗 (x) ≤ 0, ∀ 𝑗 ∈ (1, . . . , 10),

𝑥
(𝐿)
𝑑
≤ 𝑥𝑑 ≤ 𝑥 (𝑈)𝑑

, ∀𝑑 ∈ (1, . . . , 10),

where x ∈ R𝐷 ,

(6.7)

where 𝑔 𝑗 (x) represent the geometrical constraints, x the variables to optimize, and 𝑥 (𝐿)
𝑑

and 𝑥 (𝑈)
𝑑

the lower

and upper bound of the 𝑑-th variable respectively. All variables are restricted to have a precision of two

decimal places due to manufacturing accuracy limits. Both objective functions, Average Torque(x) and

Torque Pulsation(x), are based on the result of a 2D transient electromagnetic analysis.

6.2.3 Methodology

When solving real-world optimization problems, the definition of the problem itself can be challenging,

and numerous design decisions have to be made. A careful observation of the optimization problem in the

previous section reveals that during optimization, along with two objectives, 10 geometric constraints need to

be dealt with as well. In particular, while objective functions are expensive to compute, geometric constraints

are relatively inexpensive and are computed using mathematical expressions. A preliminary study [282]
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showed that the computational inexpensiveness of constraint evaluations could be exploited through a repair

operator. The goal of the repair operator is to convert an infeasible solution to a feasible one that satisfies all

constraints. Additionally, design optimization of electric machines is an expensive problem to solve and an

effort must be made to reduce the computational cost. The evaluation of 1000 design solutions using a 2D

transient magnetic study in Flux-2D on a single core of a PC-based workstation can take about 14 hours even

with only 1/8𝑡ℎ periodic model. In order to maintain the statistical significance of results, an optimization

run has to be repeated several times, making the whole procedure extremely expensive. Therefore, this study

also presents a strategy for the incorporation of surrogates into the proposed optimization algorithm along

with a repair operator.

In this study, the well-known evolutionary multi-objective optimization (MOO) algorithm NSGA-II [10]

is used as the base optimization algorithm. NSGA-II is a modular, parameter-less optimization algorithm

well suited for bi-objective optimization problems, including optimization of electric machines. NSGA-II

starts with a population of random solutions called the parent population. After evaluating the population

members, pair-wise comparisons are made to select non-dominated and less-crowded solutions [9] in order to

meet the main goals of multi-objective optimization. The selected population members are then recombined

and mutated to create an offspring population of the same size as the parent population. After their evaluation,

the offspring population is merged with the parent population to execute a final survival selection to pick the

top half of the population. The selected population becomes the parent population of the next generation.

This process is continued until a termination criterion is satisfied. The incorporation of a repair operator and

surrogate assistance is explained below.

6.2.3.1 Repair Operator

The repair operator implementation consists of two phases: first, the geometric constraints are satisfied by

using an embedded but relatively simple optimization procedure; second, the precision of two decimals is

satisfied by rounding each variable up or down, preserving the satisfaction of the geometric constraints for

an easy implementation purpose. Thus, the repair operator finally returns a feasible solution considering

all the electric engine design problem specifications. The proposed repair ensures that a solution is feasible

before its evaluation of objectives. In order to ensure feasibility, the constraint functions are called more

frequently than the objective functions, exploiting the inexpensiveness of constraints. Incorporating this
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repair operator into an evolutionary algorithm is relatively straightforward and yet an effective strategy of

adapting an existing optimization method to the needs of a real-world optimization problem.

6.2.3.2 Surrogate Incorporation

Commonly, surrogates – approximation or interpolation models – are utilized during optimization to improve

the convergence behavior. First, one shall distinguish between two different types of evaluations: ESEs that

require to run the computationally expensive evaluation; and ASEs which is a computationally inexpensive

approximation by the surrogate. Where the overall optimization run is limited by ESEmax function evaluation,

function calls of ASEs are only considered as algorithmic overhead. In order to improve the convergence of

NSGA-II, the surrogates provide ASEs and let the algorithm look several iterations into the future without

any evaluation of ESEs. The surrogate models are used to create a set of infill solutions as follows: First,

NSGA-II is run for 𝑘 more iterations (starting from the best solutions found so far), returning the solution

set (cand). The number of solutions in (cand) corresponds to the population size of the algorithm fixed to

100 solutions in this study. After eliminating duplicates in (cand), the number of solutions 𝑁 desired to

run using ESEs needs to be selected. The selection first creates 𝑁 clusters (in the objective space based

on F(cand)) using the k-means algorithm and then uses a roulette wheel selection based on the predicted

crowding distances. Note that this will introduce a bias towards boundary points as they have been depicted

with a crowding distance of infinity. Altogether, this results in 𝑁 solutions to be then evaluated using ESEs

in this optimization cycle.

A few more words shall be said about the surrogate itself. Since the electric machine design is formulated

with two objectives to be optimized, two different models are built. Separately fitting a model for each

objective corresponds to the M1 method proposed in the surrogate usage taxonomy [23]. For each objective,

the best model type is found by iterating over different model realizations of RBF [34] and Kriging [35]

varying normalization, regression, and kernel type. Finally, the best model type is chosen based on the

validation set’s performance.
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Figure 6.14: Ranking selection of solutions obtained by optimizing the surrogate-based optimiza-
tion problem.

6.2.3.3 NSGA-II-WR-SA

In Algorithm 6.1, a detailed pseudo-code demonstrating the solution repair and surrogate usage is provided.

The algorithm’s parameters are the expensive objective functions 𝑓 (x) and the inexpensive constraint func-

tions 𝑔(x); the maximum number of exact solution evaluations ESEmax serves as an overall termination

criterion; the number of the initial design of experiments 𝑁DOE describes how many designs are evaluated

before optimization starts; the number of solutions 𝑁 evaluated in each optimization cycle; and the number

of surrogate optimization cycles 𝑘 , or in other words for how many iterations the surrogate are used to look

into the future.

First, the algorithm starts by sampling 𝑁DOE solutions in the feasible space using a sampling strategy

producing only feasible solutions (for more details, we refer to [282]) and evaluates the solution set (Line 1

and 2). Then, while the overall evaluation budget ESEmax has not been used yet, surrogates 𝑓 are built for

the objectives (Line 4). By applying NSGA-II for 𝑘 optimization cycles starting from 𝑋 using the surrogate

models 𝑓 (𝑥) and the inexpensive objective functions 𝑔(𝑥), a candidate set of solutions (cand) and F(cand) is

retrieved (Line 5). Depending on the surrogate problem, some solutions in (cand) can be identical to the ones

already evaluated in 𝑋; thus, a duplicate elimination ensures these solutions are filtered out (Line 6). Since

the size of (cand) exceeds 𝑁 , a subset selection based on the predicted crowding distances takes place (Line 7

and 8). Finally, the resulting solution set (surrogate) of size 𝑁 is evaluated using ESEs and is appended to

the archive of solutions.
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Algorithm 6.1: NSGA-II-WR-SA: NSGA-II with Repair and Surrogate Assistance.
Input : Expensive Objective Function 𝑓 (x), Inexpensive Constraint Function 𝑔(x), Maximum

Number of Exact Solution Evaluations ESEmax, Number of Design of Experiments 𝑁DOE,
Number of ESEs in each Iteration 𝑁 , Number of Surrogate Optimization Cycles 𝑘

/* initialize feas. solutions using the inexpensive function 𝑔 */
1 ← constrained_sampling(𝑁DOE, 𝑔)
2 F← 𝑓 ()
3 while | | < ESE max do

/* exploitation using the surrogate */

4 𝑓 ← fit_surrogate(,F)
5

(
(cand),F(cand)

)
← optimize(’NSGA-II-WR’, 𝑓 , 𝑔, ,F, 𝑘)

6
(
(cand),F(cand)

)
← eliminate_duplicates(,(cand) ,F(cand))

7 𝐶 ← cluster(’k_means’, 𝑁 (exploit) ,F(cand))
8 (surrogate) ← ranking_selection((cand), 𝐶, crowding(F(cand)))

/* evaluate and merge to the archive */

9 F(surrogate) ← 𝑓 ((surrogate));
10 ← ∪(surrogate)
11 F← F ∪ F(surrogate)

12 end

6.2.4 Results and Discussion

In the following, the performance contribution of each of the components in the proposed method shall be

examined. This includes answering the following key questions:

• Is the repair operator helpful during optimization, and what is its impact?

• Does the usage of surrogates improve the convergence behavior?

• What insights are gained from the Pareto-optimal designs, and what can we learn from them for the

electric machine design?

The first two questions are related to the optimization method itself and its convergence. The latter is

vital as it addresses the ultimate goal of optimization, which is gaining more insights and finally choosing

an electric machine design.
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Table 6.5: The constraint violation of each constraint value from 𝑔1 to 𝑔10.

Value 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10

Infeas. 0.0% 31.43% 19.16% 19.16% 21.94% 19.59% 36.28% 0.0% 0.0% 20.25%
Rank 7 2 6 6 3 5 1 7 7 4

6.2.4.1 Analysis of Constraints

Before analyzing the impact of the repair operator, the constraints shall be investigated. As an initial study,

100 random solutions are sampled using the Latin hypercube sampling method. In order to ensure statistical

significance, each experiment is repeated 100 times. Results show that 69.7% of these randomly sampled

solutions are infeasible, or in other words, only 30.3% are feasible. A solution is considered infeasible if

one or more constraints are violated. An analysis of each constraint separately provides more information

on what type of constraints are more difficult to satisfy. In Table 6.5, the percentage of infeasible solutions

is shown for each constraint. The percentages reveal that some constraints are more difficult to satisfy than

others. The constraints 𝑔8 and 𝑔9, which control the slot shape, and 𝑔1, which controls the magnet placement

close to the shaft, have not been violated in any of the 10, 000 solutions. In contrast, some other constraints,

such as 𝑔2 and 𝑔7, related to magnet placement close to rotor OD, are responsible for infeasible solutions

31.43% and 36.28% of the time. It is worth mentioning that these 10, 000 solutions are generated from the

ranges of the variables defined in Table 6.4. For a different search space with arbitrarily defined variable

bounds, the percentage of infeasible solutions could be even larger.

6.2.4.2 Impact of Repair Operator

In order to investigate the impact of the proposed repair operator, experiments with two optimization

methods are conducted: (1) NSGA-II and (2) NSGA-II-WR, which refers to NSGA-II with the proposed

repair operator. Both approaches use the binary tournament selection, simulated binary crossover (SBX)

operator with a probability of 0.9, and polynomial mutation. The distribution index used for crossover and

mutation operators are 𝜂𝑐 = 15 and 𝜂𝑚 = 20, respectively. For both methods, a population size of 100, 20

offsprings in each generation, and 1500 function evaluations in total are chosen for one optimization run.

Five such optimization runs are completed for each method to maintain statistical significance, making the

total number of evaluations 7500. The overall setup and results of all experiments are shown in Table 6.6
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Table 6.6: Optimization setup and results. Evaluations (Evals) correspond to total functional
evaluations performed in five runs. The reported hypervolume is calculated after normalization of
objective functions.

Algorithm Description Evals Feasible Non-dominated Hypervolume

NSGA-II Conventional 7,500 5,446 27 0.7206
NSGA-II-WR With Repair 7,500 7, 500 59 0.7382

(a) NSGA-II (7,500 evaluations). (b) NSGA-II-WR (7,500 evaluations).

Figure 6.15: Objective space illustrating dominated and non-dominated solutions for optimization
runs completed using NSGA-II and NSGA-II-WR

and Figure 6.15.

First of all, one can note that both algorithms have successfully converged to a set of Pareto-optimal so-

lutions showing trade-offs between average torque and torque pulsation. Second, NSGA-II-WR outperforms

NSGA-II, which demonstrates the positive impact of the repair operator. The use of the repair operator

obtains more non-dominated solutions, which also have a larger hypervolume value. Moreover, it should be

noted that for the calculation of hypervolume, the worst and the best points are found from the combined set

of the two Pareto-optimal fronts. Thereafter, the objective functions are normalized to obtain the normalized

hypervolume, as shown in Table 6.6. Now, one might argue why this experiment was necessary and how a

repair operator could have harmed the convergence in the first place? One possible risk of adding a deter-

ministic repair of infeasible solutions is a diversity loss because the natural exploration of an evolutionary

algorithm has been interfered with. Thus, influencing the exploration by adding a repair can also have a

negative impact. However, results indicate that the proposed customization is well-suited for optimizing the

design of an IPM machine and increases the diversity of obtained solutions on the Pareto-optimal front.
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6.2.4.3 Parameter Study for Surrogate-Assisted Optimization

In this section, the following three hyperparameters related to the surrogate-assistance are varied to analyze

the performance of the proposed optimization method.

• 𝑁: Number of ESEs in each iteration

• 𝑘: Number of generations for exploitation using ASEs

• 𝑁DOE: Number of initial design of experiments

To carefully analyze the impact of the above parameters, three optimization Setups, A, B, and C, are

defined in a sequential manner. Each setup consists of four cases with variations applied to only one

hyperparameter while keeping the other two constant. Each case is repeated five times with 200 functional

evaluations in each run, making the total number of evaluations equal to 1,000. To make fair comparisons,

the same set of 𝑁DOE are used for all runs defined in Setup A and B, while the same seed is used to generate

the initial population for all runs defined in Setup C. The complete setup for this study is shown in Table 6.7.

Clearly, Setup A, B, and C quantify the impact of 𝑁 , 𝑘 , and 𝑁DOE. respectively. In order to compare the

performance of surrogates in different cases, three criteria are selected, (1) the number of non-dominated

solutions (𝑁𝑛𝑑𝑠), (2) Hypervolume (HV), and (3) the rate of change of HV with evaluations (RHVE). Since

the study aims to find a suitable hyperparameter setting in a sequential manner, results of Setup A are used

to define Setup B, and combined results of Setups A and B are used to define Setup C. The calculation of

the three criteria is explained below.

• 𝑁𝑛𝑑𝑠: All five runs of each case are combined to obtain one non-dominated (Pareto) front, yielding

the number of non-dominated solutions.

• HV: The best and the worst objective function values are found from the Pareto-optimal sets of the cases

being analyzed, and objective functions values are normalized to calculate the corresponding HV.

• RHVE: Five runs of each case provide five arrays of RHVE. Then the median of these five arrays is

used to obtain the final RHVE for the corresponding case.

Results for all the cases of three setups are shown in Table 6.8 and Figure 6.16. The observations from

this study are listed below.
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Table 6.7: Complete setup for analyzing impact of hyperparameters on performance of surrogate-
assisted optimization. For all cases, number of functional evaluations is limited to 200 in a single
run. Each case is repeated 5 times, thus, making total evaluations 1,000 for each case.

Case Runs
Setup A Setup B Setup C

𝑁 𝑘 𝑁DOE 𝑁 𝑘 𝑁DOE 𝑁 𝑘 𝑁DOE

1 5 5 25 100 10 10 100 10 35 60
2 5 10 25 100 10 20 100 10 35 80
3 5 20 25 100 10 25 100 10 35 100
4 5 25 25 100 10 35 100 10 35 120

Table 6.8: Results for Setups A, B, and C defined for analyzing impact of hyperparameters on
performance of surrogates. Hypervolume (HV) is calculated after normalization of objective
functions.

Case Setup A Setup B Setup C
𝑁𝑛𝑑𝑠 HV 𝑁𝑛𝑑𝑠 HV 𝑁𝑛𝑑𝑠 HV

1 42 0.8051 32 0.8062 47 0.8650
2 40 0.8304 33 0.7851 51 0.8269
3 56 0.7711 40 0.8304 43 0.8211
4 30 0.7475 43 0.8397 38 0.7983

• Increasing the number of 𝑁 , initially improves the non-dominated front. However, a large value of 𝑁

may lead to an over-early convergence with a biased search, as can be seen for 𝑁 = 20 and 𝑁 = 25.

A possible way to overcome this could be to increase the total number of evaluations. Nevertheless,

that would also result in an unwanted increase in the associated computational cost.

• Increasing the value of parameter 𝑘 leads to a better Pareto-optimal front. This makes sense since

more generations for exploitation means more ASEs before surrogates produce infill solutions.

• Increasing the value of 𝑁DOE results in smaller HV. For a smaller value of 𝑁DOE, the surrogate has

more ESEs to improve the model fit and generate better offsprings in future generations. This means

running the optimization cycle with more ESEs could lead to an improvement in the quality of the

Pareto-optimal set for a larger value of 𝑁DOE. However, this will also increase the computational cost

of optimization, which is again undesirable.
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Figure 6.16: Objective space illustrating Pareto-optimal fronts for cases of Setups A, B, and C.
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Figure 6.17: Comparison of objective space with Pareto-optimal fronts and normalized design
space of Pareto optimal sets. Pareto-optimal sets are obtained from two optimization methods,
NSGA-II-WR and NSGA-II-WR-SA.

6.2.4.4 Convergence Analysis with and without Surrogates

Based on the hyperparameter study, Case 1 from Setup C, with 𝑁 = 10, 𝑘 = 35, and 𝑁DOE = 60, is identified

as the best setting for surrogate-assisted optimization and its results are compared with those obtained from

NSGA-II-WR. For the remainder of this section, we refer to the best hyperparameter configuration found as

NSGA-II-WR-SA.

Figure 6.17a shows a comparison of the two Pareto-optimal sets obtained by NSGA-II-WR and NSGA-

II-WR-SA. One can observe that NSGA-II-WR-SA clearly outperforms NSGA-II-WR as the Pareto-optimal

front obtained with the former method dominates most of the Pareto-optimal front obtained with the latter.

To understand the convergence of each optimization method, the design space of the two Pareto-optimal sets

is plotted using a parallel coordinates plot (PCP) as shown in Figure 6.17b. Each vertical axis in the PCP plot

represents the normalized optimization variable 𝑥𝑑 with its lower and upper bounds as 0 and 1, respectively,

and each horizontal line represents a solution. The design space of the two Pareto-optimal sets shows that

almost all the variables have converged to an optimal value with NSGA-II-WR-SA, whereas, with NSGA-II-

WR, some of the variables still have significant variations with some further scope of convergence. These

observations validate the incorporation of surrogates in the proposed optimization method, demonstrating

the improvement of the algorithm’s convergence.

It should be noted that while NSGA-II-WR uses 7,500 ESEs, the evaluation budget for NSGA-II-WR-SA

is limited to only 1,000. However, there is more to optimization with surrogates than just the number of
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Figure 6.18: Exploration of objective space and MSE in prediction of objective functions, for each
generation using NSGA-II-WR-SA.

function evaluations. As explained in the previous section, surrogates look into the future for 𝑘 iterations,

35 in the case of NSGA-II-WR-SA, before producing 𝑁 number of infill solutions for the next generation.

In each iteration, surrogates provide ASEs, of size equal to 100 in this study, effectively evaluating 3,500

solutions before generating infills. This way, the effective number of evaluations using surrogates exceeds

those without surrogates, which leads to better convergence. Further insights into the convergence can be

obtained by analyzing how the surrogates explore the objective space and how close the predicted objective

values are to the actual expensive ones. Figure 6.18 shows the objective space and the mean squared

error (MSE) of predictions in each generation using NSGA-II-WR-SA (in one single run). An important

observation is that surrogates can predict average torque with higher accuracy than torque pulsations, which

are greatly influenced by the electrical steel’s non-linearity (magnetic saturation). The sudden rise in MSE

of pulsations from generation 7 to 8 can be explained by analyzing the corresponding solutions in objective

space. Due to a sudden increase in average torque, more and more solutions are generated with higher slot

cross-section and magnet volume, which results in an operation in a high saturation region. Consequently,

it takes some time before the surrogates can predict the pulsations accurately.

6.2.4.5 Analysis of Pareto-optimal Solutions

After discussing the optimization procedure in detail, Pareto-optimal solutions shall be analyzed in order to

gain insight into the electric machine design. For this purpose, the design space of the Pareto-optimal set

obtained by NSGA-II-WR-SA is analyzed, as shown in Figure 6.17b. Since the size of the machine is kept
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constant, magnet width (𝑥3), slot height (𝑥7), and slot width (𝑥8) converge to the higher end of variable ranges

for most solutions. While a larger magnet width increases magnet flux linkage leading to higher average

torque, it also reduces the q-axis width (𝑥6), which has converged to the lower end of the variable range.

Similarly, an increase in slot cross-section area results in more space for winding, which directly translates

to higher allowable excitation current and an increase in average torque. Additionally, a reduction in bridge

height (𝑥5) directly increases the air-gap flux density, which increases average torque.

On the other hand, torque pulsations are affected by the magnet pole arc and material saturation.

Magnet pole arc is directly proportional to magnet width (𝑥3) and angle between the magnets (𝑥4). Material

saturation is a nonlinear behavior observed in magnetic materials, such as electrical steel, introducing

saturation harmonics in magnetic flux density. While a larger slot cross-section increases average torque

by means of more excitation current, it also increases magnetic material saturation, leading to more torque

pulsations. Lastly, the height and width of slot opening, 𝑥9 and 𝑥10 respectively, which are responsible for

slot harmonics, have converged to the lower end of the variable range. This makes sense as semi-closed slots

are used as an effective method to reduce slot harmonics contributing to torque-pulsations [320].

6.2.4.6 Selection of Preferred Solutions

The selection of an electric machine design is primarily application-dependent. A popular approach uses

a scalarized function for optimization, which yields a single optimal solution at the end of an optimization

run. However, selecting weights for a scalarized function is rather difficult. Scalarization also prevents the

possibility of analyzing trade-offs offered by Pareto-optimal solutions. In this study, two different approaches

are used to select the preferred solutions; (1) a domain-specific a posteriori multi-criteria decision-making

(MCDM) method which involves machine expertise, and (2) trade-off analysis of the Pareto-optimal set

to identify and choose the solutions with the highest trade-off. Pareto-optimal solutions obtained from

combined runs of NSGA-II-WR and NSGA-II-WR-SA optimization methods are used in both approaches.

Domain Specific A Posteriori MCDM Method: For domain-specific a posteriori MCDM method, the

following performance measures, important to all PMSMs, apart from the two objective functions defined

in (6.7), are used to select preferred solutions from the Pareto-optimal set.

• Total harmonic distortion of noload back emf (THDV)
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• Peak of fundamental of back emf (F-BEMF)

• Magnet utilization factor (MUF)

For electric machine design, a low value of THDV is desired since it is a direct measure of noise,

vibration, and harshness (NVH) during the operation of the electric machine. Similarly, an increase in

F-BEMF increases the average torque but reduces the maximum speed that the machine can achieve, thus,

presenting a trade-off. On the other hand, a higher value of MUF is desired, where MUF is defined as the

ratio of average torque to PM volume. Since PM material is expensive, a higher value of MUF translates

to a reduction in the machine cost. Figure 6.19a shows THDV for Pareto-optimal solutions obtained from

combined runs of NSGA-II-WR and NSGA-II-WR-SA optimization methods. Although solutions lying in

the bottom region of the Pareto-front have the least torque pulsation, they have the highest THDV (more than

30%) and must be avoided during selection. Since the remaining Pareto-optimal solutions have similar THDV

(10-14%), it is easier to select solutions based on the other four performance measures. Based on further

evaluation, three preferred solutions, 1, 2, and 3, are selected, which are also highlighted in Figure 6.19a.

The basis of the selection of these solutions is as follows.

• Solution 1: maximum average torque

• Solution 2: maximum MUF

• Solution 3: minimum pulsation and F-BEMF

Trade-Off Calculation Using Objective Functions: Trade-off analysis of the Pareto-optimal set is an

effective method to select preferred solutions without domain expertise. In this study, for a particular

solution (x(𝑖) ), a trade-off is calculated using the following equation on the neighborhood of points ranked

according to Euclidean distance (represented by 𝐵(x(𝑖) )). The term
∑𝑀

𝑘=1{1|𝑐𝑘 > 𝑑𝑘} calculates the number

of 𝑘’s (out of 𝑀) for which the condition 𝑐𝑘 > 𝑑𝑘 is valid. It should be noted that for the trade-off calculation,

only two objective functions defined in (6.7) are used, and solutions with high trade-off values are desired.
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Figure 6.19: Objective space highlighting the selected solutions using the a posteriori MCDM
method.

Avg.Loss(x(𝑖) , x( 𝑗) ) =
∑𝑀

𝑘=1 𝑚𝑎𝑥
(
0, 𝑓𝑘 (x( 𝑗) ) − 𝑓𝑘 (x(𝑖) )

)∑𝑀
𝑘=1{1| 𝑓𝑘 (x( 𝑗) ) > 𝑓𝑘 (x(𝑖) )}

,

Avg.Gain(x(𝑖) , x( 𝑗) ) =
∑𝑀

𝑘=1 𝑚𝑎𝑥
(
0, 𝑓𝑘 (x(𝑖) ) − 𝑓𝑘 (x( 𝑗) )

)∑𝑀
𝑘=1{1| 𝑓𝑘 (x(𝑖) ) > 𝑓𝑘 (x( 𝑗) )}

,

Trade-off(x(𝑖) ) =
|𝐵(x(𝑖) ) |
max
𝑗=1

Avg.Loss(x(𝑖) , x( 𝑗) )
Avg.Gain(x(𝑖) , x( 𝑗) )

.

(6.8)

After performing a trade-off calculation based on the above definition, three solutions with the highest

trade-off, Solution 3, 4, and 5, are selected from the combined Pareto-optimal set, as shown in Figure 6.19b.

Interestingly, Solution 3 is picked again, with the highest trade-offs among all solutions. The basis of the

selection of these solutions is as follows.

• Solution 3: highest trade-off value (114.99)

• Solution 4: 2𝑛𝑑 highest trade-off value (50.79)

• Solution 5: 3𝑟𝑑 highest trade-off value (35.07)

Performance comparison of selected solutions: Performance details of the five selected solutions along

with reference design are given in Table 6.9. Further insights into the performance of these solutions can be
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Table 6.9: Performance comparison of five preferred solutions found using domain specific a
posteriori MCDM method and trade-off analysis. Preferred values are highlighted in bold for the
five solutions.

Solution Avg torque Pulsations THDV MUF F-BEMF
(Nm) (Nm) (%) (Nm/mm3) (V)

1 263.0374 47.4060 14.1263 0.0290 248.2401
2 235.5986 14.2488 11.2982 0.0308 236.7291
3 231.3853 9.9186 11.5016 0.0304 234.4451
4 258.3494 38.2791 12.2894 0.0287 246.4461
5 254.4529 33.7342 10.4722 0.0285 242.1732

Reference 214.7760 36.1846 14.4093 0.0330 209.2622

gained by analyzing the design space, as shown in Figure 6.20a. Some important observations highlighting

the trade-off among selected solutions are as follows.

• Out of the five selected solutions, Solution 4 is dominated in all performance measures by at least one

solution.

• Solution 1 provides the maximum average torque but also maximizes the amplitude of pulsations and

F-BEMF. Both these characteristics can be explained by larger magnet thickness (𝑥2), slot height (𝑥7),

slot width (𝑥8), and slot opening height and width (𝑥9 and 𝑥10).

• Solutions 2 and 3 perform quite similarly in all aspects, with slight variations observed in average

torque and torque pulsations. This can be explained since both solutions have almost similar values

of design variables with only a significant difference in angle between magnets (𝑥4).

• All selected solutions have larger F-BEMF compared to the reference design, which means that all

five solutions will have a smaller speed range. The relation between F-BEMF and the maximum

achievable speed can be seen in Figure 6.20b, which shows the torque/speed envelop of solutions 1

and 3 along with reference design. With a further increase in speed, one would observe that torque

produced by Solution 1 drops to zero more quickly compared to Solution 3.

• Although Solution 5 has the least THDV and provides high average torque (only 3.26% less than

Solution 1), it has the least MUF out of the selected solutions. Additionally, Solution 5 has significantly
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Figure 6.20: Five selected Pareto-optimal solutions highlighted in normalized design space.

less pulsation due to smaller slot width (𝑥8), leading to a smaller slot cross-section compared to

Solution 1.

• A comparison of magnetic flux density plots of Solutions 1, 2, and 3 at corresponding rated operating

conditions shows that Solution 1 suffers from higher saturation in stator teeth, back iron, and rotor

steel close to magnet edges as explained above and is shown in Figure 6.21.

Based on the discussion presented in this work, one should select Solution 1, 4, or 5 for an application

with a high average torque requirement. If the focus is more on smooth operation with high-speed range,

Solution 2 or 3 should be selected. It is also worth mentioning that while trade-off analysis can pick Solution3,

one would have missed out on Solution 2 with the highest MUF which requires domain expertise. Ultimately,

the selection of a single solution out of a Pareto-optimal set will require further preference information.

6.2.5 Summary of Section 6.2

In this section, a repair operator to efficiently handle inexpensive constraints has been presented. The

operator’s goal is to convert every infeasible solution to a feasible one before the expensive objective

function evaluation takes place. The repair operator has been incorporated into NSGA-II, a popular multi-

objective optimization algorithm, and its impact has been demonstrated by solving a bi-objective optimization

problem with expensive objectives and inexpensive constraint function evaluations. Results have shown that

the optimization with the proposed repair operator (NSGA-II-WR) has led to an improved Pareto-optimal set

compared to the baseline optimization method (NSGA-II). Since the optimization of real-world problems is
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(a) Solution 1. (b) Solution 2.

(c) Solution 3. (d) Reference design.

Figure 6.21: Magnetic flux density plots of Solutions 1, 2, 3 and reference design at rated operation.

often time-consuming, an extension of the proposed method with surrogate assistance has also been proposed.

A sequential parametric study has been performed to identify the optimal values of three parameters; (1)

infills in each generation (𝑁), (2) number of generations for exploitation (𝑘), and (3) number of the initial

design of experiments (𝑁DOE). Results with a tuned parameter configuration have indicated that optimization

with surrogates (NSGA-II-WR-SA) improves the algorithm’s convergence further and outperforms NSGA-

II-WR significantly. The ultimate goal of an optimization process is to reach an optimal solution that can

be implemented successfully. Thus, an a posteriori MCDM approach focused on machine cost, noise,

vibration, harshness (NVH), and speed range of the electric machine has been presented to identify three

preferred solutions out of the Pareto-optimal set successfully. Additionally, trade-off calculations based on

objective functions have also been used to pick three preferred solutions, thereby helping the designer focus

on solutions of the most interest.

6.3 Summary of the Chapter

This chapter has presented two case studies of real-world applications with computationally expensive

objectives functions. First, we have provided a case study addressing the optimization of a cylinder head
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water jacket. Results have shown that surrogate incorporation can effectively improve the convergence

behavior of optimization algorithms. The second case study has investigated the optimization of the design

of an electric machine. The optimization problem was based on computationally expensive objectives but less

time-consuming constraints. The proposed method has exploited the discrepancy of expenses by ensuring the

feasibility of a design before starting the time-consuming simulation. Both case studies have demonstrated

the practical relevance of directly addressing computationally expensive functions in the algorithm design.
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CHAPTER 7

OPTIMIZATION IN PRACTICE

The previous chapters have enlightened the optimization of computationally expensive functions from a

more technical point of view, focusing on how surrogates can be used during optimization. Nevertheless,

most applications’ essential and challenging aspect is their interdisciplinary character, which has not been

addressed yet. For application problems, knowledge and experience in optimization and at least one other

domain is necessary. In practice, this requires collaboration between experts with (preferably) complementary

expertise. But the way of carrying out the collaborations and the responsibilities of the domain and

optimization experts need to be investigated. One of the optimization expert’s tasks is to find a suitable

optimization method or develop a prototype. For both purposes, most commonly existing optimization

frameworks are either directly used by executing an optimization function or indirectly by importing modules.

Thus, as developers of a widely used optimization framework called pymoo, we like to give some insights

into its architecture, features, and usage. As collaboration and the usage of frameworks are critical for

real-world optimization success, both will be discussed next.

7.1 Collaborative Optimization

7.1.1 Introduction

Interdisciplinarity is a critical component of any applied research nowadays. Multiple branches of knowledge

coming together require not only to master each discipline independently but also their intersections. A

discipline playing an essential role in various sciences regarding problem-solving tasks is (mathematical)

optimization. The interdisciplinary character of optimization becomes apparent by studying related literature

in various research fields, such as engineering, economics, medicine, and society [172, 174, 200, 204]. While

reading different kinds of studies, one will realize that some publications focus on the domain and others

more on the optimization method itself; however, most of the attention is paid to the investigation’s outcome

and not the collaborative process. Since collaboration is vital for success, this chapter focuses on aspects of

collaborative research in the context of optimization, which will be referred to as collaborative optimization

in the remainder of this study.
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Collaborations are essential in an interwoven discipline like optimization, which requires knowledge in

optimization itself and one or multiple other domains. Because domain knowledge is the foundation for

the algorithm’s design, its incorporation requires a fundamental, or even deep, understanding of the domain

and the desired method’s requirements. Naturally, this demonstrates the need for domain and optimization

knowledge, which is realized by initiating a collaboration. The attempt of separately solving the domain-

specific and optimization-related tasks is likely to fail; however, this is still carried out in practice even

today. For instance, such a clear separation of tasks can be realized by having a domain expert formulating

the problem statement independently and the optimization expert developing the algorithm from thereon

without any further feedback from the domain expert. Even though each task should have a collaborator

responsible for taking the lead, communication and agreements are vital for true collaboration and success.

Thus, in collaborative optimization, the outcome is more than the sum of its parts, and success is achieved

by effectively addressing the fusion of multiple research fields.

This chapter’s focus shall lie on the research collaboration in any kind of discipline where optimization is

needed and applied. Thus, the different phases of collaboration and all supporting activities are of importance.

Furthermore, in this study, collaborative optimization is based on human-human interactions; however,

human-machine interaction can be a component of the problem description. Nevertheless, while related

works specify collaborative optimization only in the context of multi-disciplinary design optimization [321],

this study considers collaboration in a more generic context. Moreover, it is worth mentioning that the term

collaborative optimization has also been used to refer to a specific type of algorithms to solve large-scale

optimization problems [322, 323], which is also not the focus of this study.

First, we’ll discuss work related to different aspects of collaborative optimization. In Section 7.1.3,

we propose a blueprint for collaborative optimization by describing primary and supporting activities.

Illustrative case studies are provided in Section 7.1.4 and conclusions are discussed in Section 7.1.5.

7.1.2 Related Work

Collaboration can be defined as “the situation of two or more people working together to create or achieve

the same thing” [324]. Sharing the same goal while working together is essential to understanding the

word’s meaning. Another definition emphasizes the existence of conflicting goals, which should be reduced

to a common denominator, and the fact that collaboration is more contentious than coordination or coop-
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eration [325]. In the field of optimization, well-studied subjects characterize collaboration by projects and

project management, interdisciplinarity, communication, and (applied) research. Even though all of them

have to be mastered simultaneously in collaborative optimization, related work considers them indepen-

dently for now. Later in this study, a more precise definition of collaborative optimization and these aspects’

interactions will be provided.

Projects have been well-studied throughout the literature and are a fundamental part of economics.

Techniques to measure the success of a project have especially been of interest. A well-known method

for measuring success is the so-called iron triangle, describing success as a trade-off of time, cost, and

quality [326]. Whereas most authors agree that the criteria are critical, the model has also been criticized for

being too simple. Thus, more sophisticated models have been proposed to measure the success or failure of

a project. In general, there is an agreement that for projects in general, measuring success is challenging, not

least because of subjective views of stakeholders or the time dependency [327]. During a project, the time

is also referred to as the project life cycle, which can be divided into different phases: conceptualization,

planning, executing, termination [328]. More modern approaches, however, do not follow the traditional

waterfall model; instead, they pursue flexible and iterative project management strategies [329].

Projects with goals regarding more than one discipline have to deal with interdisciplinary challenges.

Interdisciplinary is characterized by a suitable combination of knowledge from different specialties. The

purpose of the combination is to exceed the values the sum of all contributions individually [330]. A

successful fusion of disciplines requires unifying separate ways of understanding and approaching problems

across disciplines [331]. Rooting interdisciplinary research more in society was attempted by promoting work

across disciplines on many research universities campuses in the United States in past years. However, the

general superiority of interdisciplinary over disciplinary knowledge has also been critically assessed [332].

Collaboration across disciplines has to ensure efficient communication. Unavoidably, communication

is a practical discipline and a vital skill for many different sciences [333]. It is a widespread belief that

interpersonal and social problems are caused by impaired communication and can be alleviated by good

communication [334].

Besides essential aspects of collaboration itself, successful collaborations in optimization are evident by

studying literature. Various studies show optimization is almost ubiquitous, for instance, in Agriculture [172],

Engineering [174], Medicine [200] , or Economics [204]. Different research studies use different kinds of
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Figure 7.1: Collaborative optimization practice using SOLVeR

collaborations among different stakeholders. Collaboration is also set up in different ways, for example, in

the same laboratory between researchers, across departments and research groups, across research institutes

in the same of different countries, or between academia and industry.

7.1.3 SOLVeR: Collaborative Optimization

Collaborative optimization describes a procedure involving at least two stakeholders – a domain-specific and

optimization expert – pursuing to solve an optimization problem interactively. The domain-specific expert

initially provides the problem to be solved with the optimization expert’s knowledge and experience. The

interaction between both experts is crucial to solve the problem successfully and can occur at different levels

of involvement.

Even though collaborations are carried out in different manners and have different challenges, they often

have analogous phases and supplemental activities. Thus, collaborative optimization shall be schematized

to track the overall progress and highlight important aspects for a successful collaboration. A blueprint for

collaborative optimization is shown in Figure 7.1, presenting not only the phases but also the supporting

activities. The primary phases follow the SOLVeR acronym: Specification of the Problem (‘S’), Optimization

and Algorithm Design (‘O’), Live Test (‘L’), Verification of Method and Results (‘Ve’), and Repetitions and
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Lessons Learned (‘R’). For each phase, the domain and the optimization expert’s roles and responsibilities

differ and shall be discussed in detail. Moreover, the arrows between the phases on the bottom indicate that

multiple iterations of phases are inevitable in practice and an essential part of a collaboration. Furthermore,

the phases are accompanied by supporting activities, such as project management, communication, interdis-

ciplinarity, and the type of collaboration. The blueprint’s split of primary and supporting activities is inspired

by the well-known value chain model [335] with similar characteristics. Both the primary and supporting

activities are essential to reach the goals. In the following, the five SOLVeR phases are discussed, and

additionally, an overview of each phase’s characteristics is provided in Figure 7.2. Moreover, all supporting

activities are described in detail.

(i) Specification of the Problem (‘S’): In the first phase, all collaborators need to get a clear understanding

of the optimization method’s overall goal. For the optimization expert, this often requires understanding

the fundamentals of a foreign research field. Thus, the domain expert’s responsibility is to communicate

efficiently and to define domain-related terminology if necessary. The primary goal is not for all collaborators

to understand every little detail but to grasp what the problem is about. Thus, abstraction should be made

whenever possible. Moreover, possible requirements and meta-information about the problem should be

discussed, for instance, the evaluation time of a single design or the type and number of variables to be

considered. After the problem has been defined verbally, it should be stated mathematically, defining the

objective(s), constraints, and the underlying search space. With fundamental knowledge about the domain,

the optimization expert will often take the lead for the mathematical problem formulation. Nevertheless, the

domain expert’s feedback is crucial to ensure the formulation fits the specifications and the domain expert’s

expectations. For instance, a target measure could be either incorporated into the problem formulation as

a constraint or an objective. Whereas both options might be legitimate ways of considering this metric,

domain knowledge can favor one or the other. Together with the optimization expert’s knowledge about each

option’s benefits and drawbacks in an optimization sense, the domain knowledge demonstrates the benefits

of a close collaboration from the beginning.

(ii) Optimization and Algorithm Design (‘O’): After the problem has been defined mathematically, the

design of a suitable algorithm is of most interest. The selection or design of an algorithm requires experience

in optimization and can be rather challenging. Before starting with the algorithm’s design, all problem-

dependent information shall be analyzed. For instance, does the evaluation also provide information about

170



•Specification of the 
problem verbally and 
mathematically

•Domain expert clarifies 
doubts

•Optimization expert 
translates the problem 
into a mathematical 
description

•Specify all requirements 
the optimization needs 
to consider, for instance, 
execution time or 
algorithm overhead

S O L Ve R

•Solve the optimization 
problem using 
optimization techniques

•The optimization expert 
takes the lead in this 
phase

•This could be to select an 
algorithm that already 
exists, modifying an 
existing one to meet the 
needs, or design an 
algorithm from scratch

•This phase can include 
evaluating the 
performance on a test or 
the real optimization 
problem

•This phase can be 
interwoven with the 
algorithm design or stay 
separate

•Evaluate the 
performance of the 
optimization method on 
the real problem

•This might require to set 
up infrastructure such as 
computational resources 

•Writing interfaces to be 
able to call the actual 
optimization method

•Verify the obtained 
results and check 
whether they satisfy the 
requirements defined 
during specification

•Evaluate the optimization 
method itself considering 
being failsafe and other 
requirements defined 
beforehand

•The optimization expert 
usually will take care of 
the technical and the 
domain expert of the 
domain-specific aspects

•The last step should 
emphasize that multiple 
repetitions might be 
necessary to find a 
satisfying method

•If the result or method is 
not satisfying, all 
previous phases need to 
be reviewed

•Draw lessons learned 
from the optimization 
project after each 
iteration

Specification of the
Problem

Optimization and 
Algorithm Design Live Test Verifications of  

Method and Results
Repetition and 
Lesson Learned

Figure 7.2: Phases and responsibilities.

the gradient? Or, how many function evaluations are affordable? However, it’s important to note that some

characteristics can only be assumed and are not known beforehand. For example, a vital question to ask is

the modality of the function’s fitness landscape because it determines whether a local or global search might

be appropriate. If there is an explicitly defined equality constraint, one of the variables can be replaced

in terms of other variables – a process that eliminates one variable, and also every modified solution will

automatically satisfy the equality constraint. The use of such information to redefine an original problem

requires collaboration between optimization and domain-specific experts at the start of the optimization

process. A standard optimization algorithm can be modified to suit the supplied problem information. This

can happen in modifying different operators of the algorithm. For example, the initial solution(s) can be

repaired to satisfy certain constraints so that the search can begin from a good solution(s). The generative

operations for creating new solutions can be motivated by the problem information so that new solutions

satisfy the supplied problem information.

The fact that the mathematical problem definition and the optimization method are directly linked to

each other demonstrates the interdependence of the first two phases and the importance of collaboration.

After completing phase two, an algorithm has been developed, possible bugs during development have been
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fixed, and source code or a binary file for running the method exists.

(iii) Live Test (‘L’): In the third phase, the developed algorithm is run in a live environment to observe

its performance on the real-world optimization problem. The testing phase is crucial to ensure that the

algorithm’s design is suitable for the original problem. This might require interfacing between different

programming languages or setting up the computational resources to run the method in a live environment.

The domain and optimization expert’s responsibilities in this phase depend on the type of collaboration

and agreements. On the one hand, the algorithm’s design can be driven by test problems with similar

characteristics as the real-world optimization problem. The development on test problems is also often

necessary because of the lack of computational resources or software licenses on the algorithm developer’s

end or the industrial partner preferring to make the problem not accessible to the outside. On the other

hand, the problem’s evaluation function might be delivered to the optimization expert – either open or closed

source – and may be directly used during the algorithm’s design. In some cases, the problem might have been

vaguely defined from the beginning, and the developer needs to implement a representative live environment

from scratch, for instance, by generating synthetic data with reasonable assumptions. The variety of live

tests’ realizations shows that different collaboration types require a different amount of collaborative effort

in this phase. However, no matter what type has been chosen, this phase’s outcome is a method and results

that have to be analyzed.

(iv) Verification of Method and Results (‘Ve’): In the fourth phase, the goals and requirements defined

initially need to be critically assessed and verified. The verification is based on the results obtained in the

previous phase. Even though the verification procedure will vary from collaboration to collaboration, some

tasks employed in practice are to analyze the algorithm’s convergence over time and carefully inspect the

solutions being found. In some collaborations, the optimization is only performed once, and most attention

is paid to the obtained solution(s) itself, and the method plays a minor role. The obtained solutions need

to be closely examined and made sure that all requirements are satisfied. The examination often involves

checking correctness, feasibility, and the visualization of solutions and results. If discrepancies have been

observed, the mathematically defined problem might need to be refined or even entirely redefined, and a

reiteration of phase one may be necessary. Other collaborations might focus more on the method itself,

primarily when the algorithm is run repetitively, for instance, daily or weekly. Then, a thorough test of the

method, including possible boundary scenarios, is of importance. Moreover, for stochastic algorithms, not a
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single run’s performance, but a statistical analysis of a set of runs needs to be done to address the underlying

randomness and ensure the method’s robustness. No matter where the priority of the collaboration lies,

verification is crucial to measure the overall success.

(v) Repetition and Lesson Learned (‘R’): As recommended for projects in general, the last phase consists

of reflecting on the collaboration and critically assessing the progress made. Practitioners will agree that no

project ends without future work and possible new collaborations. Thus, drawing lessons learned to avoid

pitfalls helps improve long-term efficiency and productivity.

Besides primary activities classified into phases, supporting activities are an essential part of collaborative

optimization. The supporting activities accompany any of the primary phases and play a different role

anytime during the collaboration.

Project Management: A project is characterized by a project schedule with a clearly defined beginning

and end. Moreover, the project’s outcome is typically defined by milestones and project goals, which should

be achieved during or at the end of the project. In practice, goals can also be conflicting, for instance, in a

university-industry research collaboration where the researchers prioritize a seminal publication. In contrast,

the industry might want to keep the findings confidential to keep a competitor’s advantage. Nevertheless,

agreeing on the goals initially and keeping track of them is good advice in all collaborations. Moreover, project

management includes all matters regarding funding more resources and workforce during the collaboration.

Communication: Efficient communication is essential on many levels. The collaboration is accompanied

by communication throughout all phases. The availability of collaborators and the communication frequency

can significantly impact the project’s outcome. While some collaborators prefer frequent feedback, such

as daily or weekly, others favor less frequent meetings, for instance, monthly or biannually. Besides the

frequency of regular meetings, the collaboration should define several milestone meetings, consisting of at

least a kick-off and final meeting. The type of communication often depends on the geographical distance

between collaborators. A relatively small distance and convenient commute shall allow in-person meetings.

Often, however, this is not the case, and mostly online meetings are scheduled. Modern technology that

allows to turn on a webcam, share the screen, or even take over screen control can become handy to

increase such meetings’ productivity. Moreover, consistent e-mail correspondence and a hybrid in-person

and online communication style are often carried out in practice. Challenges in communication commonly
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occur through domain-specific terminology, which is unclear to all collaborators or even language barriers

in international collaborations.

Interdisciplinarity: Many collaborations have their origin of a subject being of an interdisciplinary manner.

Therefore, an expert for the involved disciplines significantly speeds up the research process or makes

meaningful insights possible at all. In collaborative optimization, interdisciplinarity is given by the presence

of optimization itself and one other discipline. For some projects, even multiple other disciplines might be

involved with possible conflicting objectives. In literature, such a situation related to optimization is also

referred to as Multi-Disciplinary Design Optimization (MDO). During the collaboration, especially during

the initial problem specification phase, a fundamental understanding of each discipline is essential. Even

only rudimentary knowledge helps develop an appreciation for each other’s research fields and facilitate

meaningful discussions.

Collaboration Type: The type of collaboration has a significant impact on each collaborator’s responsi-

bility. With the type of collaboration, we refer to aspects related to the involvement, type, and number

of collaborators. In a light collaboration, details of the optimization problem regarding complete problem

formulation are available to the optimization experts, thereby not requiring much collaboration between

the two expert groups. In a medium collaboration, besides the details of the problem formulation, further

information is required either due to the complexity involved in the problem or due to the nature of the

problem. Optimization experts must share intermediate results with domain-specific experts to get further

information to improve the optimization method. In a strong collaboration, both groups must engage in more

collaboration to solve the problem. This can happen if the objective and constraint functions cannot be shared

with the optimization experts due to confidentiality issues or the unavailability of computing resources with

the optimization group.

7.1.4 Case Studies

The blueprint for collaborative optimization can be put into practice in different ways. We demonstrate two

case studies to illustrate.

Case Study 1: Cylinder Head Water Jacket. As a case study, the collaboration with an automobile

company regarding the optimization of a Cylinder Head Water Jacket is discussed. A study focusing on the
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optimization itself has already been published [28]; however, details of the collaborative process itself were

not part of the study. Initially, the industrial partner with domain-specific expertise sought an optimization

expert to solve an industrial design problem that could not be solved suitably with a commercial solver. Most

commercial solvers are generic and not ideal candidate solution methods to find an acceptable solution with a

solution evaluation budget. Thus, a collaboration was initiated. The industrial collaborator had a background

in engineering and more than a decade of experience in engineering design. The optimization experts are

specialized in multi-objective and evolutionary optimization, and the team consisted of one professor and two

Ph.D. students. The goal to design an algorithm that can deal with a constrained multi-objective optimization

problem where each evaluation requires computationally expensive simulation was defined (phase ‘S’). Due

to the time-consuming evaluation function, the overall evaluation budget was limited to 120 simulations

per optimization run. However, the algorithmic overhead could be significantly higher and even reach a

couple of minutes to find new solutions in each iteration. Secondly, the algorithm was first developed on test

problems with similar characteristics but computationally inexpensive functions (phase ‘O’). Even though

the algorithm has been designed from scratch, the usage of existing modules and algorithms of pymoo [29]

– a Python framework for multi-objective optimization – was handy for prototyping and even sped up

the algorithm’s development. Bi-monthly discussions between all collaborators accompanied the research

process. Thirdly, multiple runs on the live environment (phase ‘L’) optimizing the Cylinder Head Water

Jacket have been employed. Because the optimization experts did not have access to the simulation software,

the optimization run was carried out manually by sending engineering designs back and forth via e-mail.

This way, multiple experiments have been run, and at the same time, the results were verified (phase ‘Ve’).

Thus, the execution of phases ‘L’ and ‘Ve’ happened simultaneously. As the method has been confirmed to

be suitable for the optimization problem, the source code has finally been delivered to the industrial partner.

Delivering the source code ensured the algorithm was used in the future for similar problems (phase ‘R’).

Moreover, a final meeting discussing the method and assessing the project’s success has taken place between

all collaborators and coworkers from related departments.

Case Study 2: Engine Design. In another auto-industry project executed at the COIN Lab, the initial

task of the industry designers was to reduce the weight of an automobile engine from its current weight

by 10 kg (phase ‘S’). The problem involves 145 discrete variables, which can be varied within specified

lower and upper bounds, 146 constraints which all must be satisfied, and six conflicting objectives, which
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all must be optimized. The objective and constraint functions were not available in explicit form; rather, a

black-box executable was supplied. Initial collaborations between the two groups revealed that the functions’

gradients were also available from the executable routine. The availability of gradient information allowed

the optimization experts to devise a new operator – a gradient-based local search approach – to improve a

solution locally. Another study revealed that when 2.5 million random solutions were evaluated, no single

solution was found to be feasible. The majority of the search space being infeasible prompted optimization

experts to devise an algorithm to infinitely emphasize every feasible solution. A generic many-objective

optimization algorithm (NSGA-III [279]) was modified to develop a customized method (phase ‘O’) to find

feasible non-dominated solutions. The customized algorithm was directly applied to solve the engine design

problem (phase ‘L’). The developed method resulting from a close collaboration found a new engine, 17

kilograms lighter than the current design, which is 7 kg better than originally desired (phase ‘Ve’). Further

information on obtained results can be found from [336]. This study mostly used a light collaboration mode.

The power of collaborative optimization came next from the designers. The multiplicity of designs

obtained by customized NSGA-III motivated the designers to set the next goal (phase ‘R’) to find multiple

engines with identical weight. This promoted the whole ‘SOLVeR’ procedure to a new specification (phase

‘S’). Optimization experts then introduced the concept of niche-preservation – survival of similar solutions

as clusters – to develop a new optimization method (phase ‘O’). Niche preservation is a new optimization

technique that was possible to be developed only by a collaborative problem-solving approach. The method

was applied to the real problem (phase ‘L’), and three different pairs of engines, each having an identical

weight, were obtained (phase ‘Ve’). The SOLVeR approach’s ability to reduce the engine weight by more

than 10 kg motivated the designers to repeat the process (phase ‘R’) to a third cycle in which they aspired to

reduce the weight further by relaxing the constraint bounds.

Relaxation of constraints to improve objective function was dealt with by formulating a two-objective

optimization problem (phase ‘O’). One of the objectives was to minimize the amount of constraint violation

from the current best solution; the second conflicting objective was to maximize the amount of weight

reduction from the current best solution. The bi-objective optimization method found multiple trade-off

solutions with different combinations of constraint violations and weight reductions (phase ‘L’). The solutions

allowed designers to better understand the trade-off before choosing a final solution for implementation (phase

‘Ve’).
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None of these extensions achieved with specific and innovative optimization methods were academic, nor

were they standard optimization practices. However, they revealed alternate solutions close to the designers’

interests, so they had a plethora of pertinent solutions before choosing one. Such a design feat was possible

only with a collaborative optimization procedure.

7.1.5 Summary of Section 7.1

Optimization is an interdisciplinary research field and a substantial part of various sciences. Thus, collabo-

ration is vital to tackle problem-solving tasks in all kinds of disciplines successfully. Whereas most studies

focus on the outcome of such collaborative optimization, this study puts the collaborative process itself

as the center of attention. To guide the process of collaboration, we have proposed a blueprint following

the SOLVeR approach consisting of five phases: Specification of the Problem, Optimization and Algorithm

Design, Live Test, Verification of Method and Results, and Repetitions and Lesson. We have defined the

domain and the optimization expert’s roles and responsibilities for each phase and highlighted the other

supporting activities during collaborative optimization. Moreover, two case studies have illustrated how the

blueprint for collaborative optimization was implemented in practice.

This chapter has demonstrated the importance of performing a collaborative optimization rather than a

silo-based optimization without any intermediate interactions from domain-specific experts. Collaborative

optimization makes solving challenging problems quicker and opens up new avenues for more flexible and

practical optimization studies. Through collaboration, the experts benefit from each other, which results in

understanding different facets of the application and gaining insights more efficiently.
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7.2 pymoo: Multi-Objective Optimization in Python

Collaborative optimization implies that different kinds of experts are working together. However, one

should not assume that everyone can write code or is familiar with the usage of programming languages.

Thus, standard software is one way of making research accessible to a larger audience. Nevertheless, such

deliverables are limited by definition because the software package is mainly of a black-box nature, and no

further modifications can be made. In contrast to standard software, open-source frameworks are publicly

available and are ideal for customizing optimization methods. For this reason, the usage of frameworks

offers a good trade-off between not having to start developing an optimization method from scratch and

having access to existing state-of-the-art optimization algorithms. As someone who has made an effort to

develop an optimization framework, we would like to share our development’s common design principles and

features. Our optimization framework pymoo is an open-source (evolutionary) multi-objective optimization

framework written in Python, and we are proud to be able to say that it has gained some popularity over the

last years [29].

7.2.1 Introduction

Optimization plays an essential role in many scientific areas, such as engineering, data analytics, and deep

learning. These fields are fast-growing, and their concepts are employed for various purposes, for instance,

gaining insights from large data sets or fitting accurate prediction models. Efficient implementation in a

suitable programming language is essential whenever an algorithm must handle a significantly large amount

of data. Python [337] has become the programming language of choice over the last few years for the research

areas mentioned above because it is not only easy to use but good community support also exists. Python is a

high-level, cross-platform, and interpreted programming language that focuses on code readability. A large

number of high-quality libraries are available and support for any kind of scientific computation is ensured.

These characteristics make Python an appropriate tool for many research and industry projects where the

investigations can be complex.

A fundamental principle of research is to ensure the reproducibility of studies and provide access to the

research materials whenever possible. In computer science, this translates to a sketch of an algorithm and

the implementation itself. However, the implementation of optimization algorithms can be challenging, and,

178



specifically, benchmarking is time-consuming. Having access to either a good collection of different source

codes or a comprehensive library is time-saving and reduces the probability of an error-prone implementation

from scratch.

To address this need for multi-objective optimization in Python, we introduce pymoo. The goal of

our framework is not only to provide state-of-the-art optimization algorithms but also to cover different

aspects related to the optimization process itself. We have implemented single-, multi-, and many-objective

test problems, which can be used as a test-bed for algorithms. In addition to the objective and constraint

values of test problems, gradient information can be retrieved through automatic differentiation [338].

Moreover, a parallel evaluation of solutions can be implemented through vectorized computations, multi-

threaded execution, and distributed computing. Further, pymoo provides implementations of performance

indicators to measure the quality of results obtained by a multi-objective optimization algorithm. Tools for

an explorative analysis through visualization of lower and higher-dimensional data are available, and multi-

criteria decision-making methods guide selecting a single solution from a solution set based on preferences.

Our framework is designed to be extendable through its modular implementation. For instance, a

genetic algorithm is assembled in a plug-and-play manner by making use of specific sub-modules, such

as initial sampling, mating selection, crossover, mutation, and survival selection. Each sub-module takes

care of an aspect independently, and, therefore, variants of algorithms can be initiated by passing different

combinations of sub-modules. This concept allows end-users to incorporate domain knowledge through

custom implementations. For example, in an evolutionary algorithm, a biased initial sampling module

created with the knowledge of domain experts can guide the initial search.

Furthermore, we like to mention that our framework is well-documented, with a large number of

available code snippets. We created a starter’s guide for users to become familiar with our framework and

demonstrate its capabilities. As an example, it shows the optimization results of a bi-objective optimization

problem with two constraints. An extract from the guide will be presented in this chapter. Moreover,

we explain each algorithm and code needed to run it on a suitable optimization problem in our software

documentation. Additionally, we show a definition of test problems and provide a plot of their fitness

landscapes. The framework documentation is built using Sphinx [339], and the correctness of modules is

ensured by automatic unit testing [340]. Most algorithms have been developed in collaboration with the

second author and benchmarked extensively against the original implementations.
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7.2.2 Related Work

In the last decades, various optimization frameworks in diverse programming languages have been developed.

However, some of them only partially cover multi-objective optimization. In general, the choice of a suitable

framework for an optimization task is a multi-objective problem itself. Moreover, some criteria are rather

subjective, for instance, the usability and extendibility of a framework. Therefore, the assessment regarding

criteria and the decision-making process differ from user to user. For example, one might have decided

on a programming language first, either because of personal preference or a project constraint and then

searched for a suitable framework. One might give more importance to the overall features of a framework,

for example, parallelization or visualization, over the programming language itself. An overview of some

existing multi-objective optimization frameworks in Python is listed in Table 7.1, each of which is described

in the following.

Recently, the well-known multi-objective optimization framework jMetal [341] developed in Java [342]

has been ported to a Python version, namely jMetalPy [343]. The authors aim to further extend it and to

make use of the full feature set of Python, for instance, data analysis and data visualization. In addition to

traditional optimization algorithms, jMetalPy also offers methods for dynamic optimization. Moreover, the

post-analysis of performance metrics of an experiment with several independent runs is automated.

Parallel Global Multiobjective Optimizer, PyGMO [344], is an optimization library for the easy distri-

bution of massive optimization tasks over multiple CPUs. It uses the generalized island-model paradigm

for the coarse-grained parallelization of optimization algorithms and, therefore, allows users to develop

asynchronous and distributed algorithms.

Platypus [345] is a multi-objective optimization framework that offers implementations of state-of-the-

art algorithms. It enables users to generate an experiment with various algorithms and provides post-analysis

methods based on metrics and visualization.

A Distributed Evolutionary Algorithms in Python (DEAP) [346] is a novel evolutionary computation

framework for rapid prototyping and testing of ideas. Even though DEAP does not focus on multi-objective

optimization, due to the modularity and extendibility of the framework, multi-objective algorithms can be

developed. Moreover, parallelization and load-balancing tasks are supported out of the box.

Inspyred [347] is a framework for creating bio-inspired computational intelligence algorithms in Python,

which is not focused on multi-objective algorithms directly, but on evolutionary computation in general.
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Table 7.1: Multi-objective optimization frameworks in Python

Name License Focus on
multi-

objective

Pure
Python

Visuali-
zation

Decision
Making

jMetalPy MIT ✓ ✓ ✓ ✗

PyGMO GPL-3.0 ✓ ✗ ✗ ✗

Platypus GPL-3.0 ✓ ✓ ✗ ✗

DEAP LGPL-3.0 ✗ ✓ ✗ ✗

Inspyred MIT ✗ ✓ ✗ ✗

pymoo Apache 2.0 ✓ ✓ ✓ ✓

However, an example for NSGA-II [10] is provided, and other multi-objective algorithms can be implemented

through the modular implementation of the framework.

If the search for frameworks is not limited to Python, other popular frameworks should be considered:

PlatEMO [245] in Matlab, MOEA [348] and jMetal [343] in Java, jMetalCpp [349] and PaGMO [344] in

C++. Of course, this is not an exhaustive list and readers may search for other available options.

7.2.3 Architecture

Software architecture is fundamentally important to keep source code organized. On the one hand, it helps

developers and users to get an overview of existing classes, and on the other hand, it allows flexibility

and extendibility by adding new modules. Figure 7.3 visualizes the architecture of pymoo. The first level

of abstraction consists of optimization problems, algorithms, and analytics. Each of the modules can be

categorized into more detail and consists of multiple sub-modules.

(i) Problems: Optimization problems in our framework are categorized into single-, multi-, and many-

objective test problems. Gradients are available through automatic differentiation, and parallelization

can be implemented by using a variety of techniques.

(ii) Optimization: Since most of the algorithms are based on evolutionary computations, operators

such as sampling, mating selection, crossover, and mutation have to be chosen or implemented.

Furthermore, because many problems in practice have one or more constraints, a methodology for

handling those must be incorporated. Some algorithms are based on decomposition, which splits the
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Figure 7.3: Software architecture of pymoo.

multi-objective problem into many single-objective problems. Moreover, when the algorithm is used

to solve the problem, a termination criterion must be defined either explicitly or implicitly by the

implementation of the algorithm.

(iii) Analytics: During and after an optimization run, analytics support the understanding of data. First,

intuitively the design space, objective space, or other metrics can be explored through visualization.

Moreover, to measure the convergence and/or diversity of a Pareto-optimal set, performance indi-

cators can be used. For real-parameter problems, the recently proposed theoretical KKT proximity

metric [350, 351] computation procedure is included in pymoo to compute the proximity of a solu-

tion to the true Pareto-optimal front, despite not knowing its exact location. In order to support the

decision-making process, either through finding points close to the area of interest in the objective

space or high trade-off solutions. This can be applied either during an optimization run to mimic

interactive optimization or as a post-analysis.

In the remainder of the chapter, we will discuss each of the modules mentioned in more detail.

7.2.4 Problems

It is common practice for researchers to evaluate the performance of algorithms on a variety of test problems.

Since we know no single-best algorithm for all arbitrary optimization problems exist [352], this helps to
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identify problem classes where the algorithm is suitable. Therefore, a collection of test problems with

different numbers of variables, objectives, or constraints and alternating complexity becomes handy for

algorithm development. Moreover, in a multi-objective context, test problems with different Pareto front

shapes or varying variable densities close to the optimal region are of interest.

7.2.4.1 Implementations

In our framework, we categorize test problems regarding the number of objectives: single-objective (1

objective), multi-objective (2 or 3 objectives), and many-objective (more than 3 objectives). Test problems

implemented in pymoo are listed in Table 7.2. For each problem, the number of variables, objectives, and

constraints are indicated. If the test problem is scalable to any of the parameters, we label the problem

with (s). If the problem is scalable, but a default number was originally proposed, we indicate that with

surrounding brackets. In case the category does not apply, for example, because we refer to a test problem

family with several functions, we use (·).

The implementations in pymoo let end-users define what values of the corresponding problem should be

returned. On an implementation level, the evaluate function of a Problem instance takes a list return_-

value_of which contains the type of values being returned. By default the objective values "F" and if the

problem has constraints the constraint violation "CV" are included. The constraint function values can be

returned independently by adding "G". This gives developers the flexibility to receive the values that are

needed for their methods.

7.2.4.2 Parallelization

If evaluation functions are computationally expensive, a serialized evaluation of a set of solutions can become

the bottleneck of the overall optimization procedure. For this reason, parallelization is desired for utilizing

existing computational resources more efficiently and the distribution of long-running calculations. In

pymoo, the evaluation function receives a set of solutions if the algorithm uses a population. This empowers

the user to implement any kind of parallelization as long as the objective values for all solutions are written as

an output when the evaluation function terminates. In our framework, a couple of possibilities to implement

parallelization exist:
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Table 7.2: Multi-objective optimization test problems.

Problem Variables Objectives Constraints

Single-Objective

Ackley (s) 1 -
Cantilevered Beams 4 1 2
Griewank (s) 1 -
Himmelblau 2 1 -
Knapsack (s) 1 1
Pressure Vessel 4 1 4
Rastrigin (s) 1 -
Rosenbrock (s) 1 -
Schwefel (s) 1 -
Sphere (s) 1 -
Zakharov (s) 1 -
G1-9 (·) (·) (·)

Multi-Objective

BNH 2 2 2
Carside 7 3 10
Kursawe 3 2 -
OSY 6 2 6
TNK 2 2 2
Truss2D 3 2 1
Welded Beam 4 2 4
CTP1-8 (s) 2 (s)
ZDT1-3 (30) 2 -
ZDT4 (10) 2 -
ZDT5 (80) 2 -
ZDT6 (10) 2 -

Many-Objective

DTLZ 1-7 (s) (s) -
CDTLZ (s) (s) -
DTLZ1−1 (s) (s) -
SDTLZ (s) (s) -
WFG (s) (s) -
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(i) Vectorized Evaluation: A common technique to parallelize evaluations is to use matrices where

each row represents a solution. Therefore, a vectorized evaluation refers to a column that includes

the variables of all solutions. By using vectors, the objective values of all solutions are calculated at

once. To run calculations on a GPU, implementing support for PyTorch [353] tensors can be done

with little overhead given suitable hardware and correctly installed drivers.

(ii) Threaded Loop-wise Evaluation: If the function evaluation should occur independently, a for loop

can be used to set the values. By default, the evaluation is serialized, and no calculations occur in

parallel. By providing a keyword to the evaluation function, pymoo spawns a thread for each evaluation

and manages those by using the default thread pool implementation in Python. This behavior can be

implemented out of the box, and the number of parallel threads can be modified.

(iii) Distributed Evaluation: If the evaluation should not be limited to a single machine, the evaluation

itself can be distributed to several workers or a whole cluster. We recommend using Dask [354]

which enables distributed computations on different levels. For instance, the matrix operation itself

can be distributed, or a whole function can be outsourced. Similar to the loop-wise evaluation, each

individual can be evaluated element-wise by sending it to a worker.

7.2.5 Optimization Module

The optimization module provides different kinds of sub-modules to be used in algorithms. Some of them

are more of a generic nature, such as decomposition and termination criterion, and others are more related

to evolutionary computing. By assembling those modules together, algorithms are built.

7.2.5.1 Algorithms

Available algorithm implementations in pymoo are listed in Table 7.3. Compared to other optimization

frameworks, the list of algorithms may look rather short; however, each algorithm is customizable, and

variants can be initialized with different parameters. For instance, a Steady-State NSGA-II [355] can be

initialized by setting the number of offspring to one. This can be achieved by supplying this as a parameter in

the initialization method. Moreover, it is worth mentioning that many-objective algorithms, such as NSGA-

III or MOEAD, require reference directions to be provided. The reference directions are commonly desired
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Table 7.3: Multi-objective optimization algorithms.

Algorithm Reference

GA [1, 32]
BRKGA [356]
DE [107]
Nelder-Mead [357]
CMA-ES [112, 113]
NSGA-II [10]
RNSGA-II [358]
NSGA-III [279, 258, 12]
UNSGA-III [359]
RNSGA-III [360]
MOEAD [11]

to be uniform or to have a bias toward a region of interest. Our framework offers an implementation of the

Das and Dennis method [280] for a fixed number of points (fixed with respect to a parameter often referred

to as partition number) and a recently proposed Riesz-Energy based method which creates a well-spaced

point set for an arbitrary number of points and is capable of introducing a bias towards preferred regions in

the objective space [276].

7.2.5.2 Operators

The following evolutionary operators are available:

(i) Sampling: The initial population is mostly based on random sampling. In some cases, it might

be based on domain knowledge or a set of existing solutions whose performance has already been

assessed. Otherwise, it can be sampled randomly for real, integer, or binary variables. Additionally,

Latin-Hypercube Sampling [234] can be used for real variables.

(ii) Crossover: A variety of crossover operators for different type of variables are implemented. In

Figure 7.4 some of them are presented. Figures 7.4a to 7.4d help to visualize the information

exchange in a crossover with two parents being involved. Each row represents an offspring and each

column a variable. The corresponding boxes indicate whether the values of the offspring are inherited

from the first or from the second parent. For one- and two-point crossovers, it can be observed that
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either one or two cuts in the variable sequence exist. Contrarily, the Uniform Crossover (UX) does

not have any clear pattern because each variable is chosen randomly either from the first or from the

second parent. For the Half Uniform Crossover (HUX), half of the variables, which are different,

are exchanged. For the purpose of illustration, we have created two parents that have different values

in 10 different positions. For real variables, Simulated Binary Crossover [361] is known to be an

efficient crossover. It mimics the crossover of binary encoded variables. In Figure 7.4e, the probability

distribution when the parents 𝑥 − 1 = 0.2 and 𝑥 − 2 = 0.8 where 𝑥 − 𝑖 ∈ [0, 1] with 𝜂 = 0.8 are

recombined is shown. Analogously, in case of integer variables we subtract 0.5 from the lower and add

(0.5− 𝜖) to the upper bound before applying the crossover and round to the nearest integer afterwards

(see Figure 7.4f).

(iii) Mutation: For real and integer variables Polynomial Mutation [362, 9] and for binary variables Bitflip

mutation [1] is provided.

Different problems require different types of operators. In practice, if a problem is supposed to be solved

repeatedly and routinely, it makes sense to customize the evolutionary operators to improve the convergence

of the algorithm. Moreover, for custom variable types, for instance trees or mixed variables [363], custom

operators [6] can be implemented easily and called by algorithm class. Our software documentation contains

examples for custom modules, operators, and variable types.

7.2.5.3 Termination Criterion

For every algorithm, it must be determined when it should terminate a run. This can be simply based on a

predefined number of function evaluations, iterations, or a more advanced criterion, such as the change of

a performance metric over time. For example, we have implemented a termination criterion based on the

variable and objective space difference between generations. In order to make the termination criterion more

robust, the last 𝑘 generations are considered. The largest movement from a solution to its closest neighbor

is tracked across generations, and whenever it is below a certain threshold, the algorithm is considered to

have converged. Analogously, the movement in the objective space can also be used. In the objective space,

however, normalization is more challenging and has to be addressed carefully. The default termination

criterion for multi-objective problems in pymoo keeps track of the boundary points in the objective space
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Figure 7.4: Illustration of some crossover operators for different variables types.

and uses them, when they have settled down, for normalization. More details about the proposed termination

criterion can be found in [364].

7.2.5.4 Decomposition

Decomposition transforms multi-objective problems into many single-objective optimization problems [365].

Such a technique can be either embedded in a multi-objective algorithm and solved simultaneously or

independently using a single-objective optimizer. Some decomposition methods are based on the lp-

metrics with different 𝑝 values. For instance, a naive but frequently used decomposition approach is the

Weighted-Sum Method (𝑝 = 1), which is known to be incapable of converging to the non-convex part of

a Pareto front [9]. Moreover, instead of summing values, Tchebysheff Method (𝑝 = ∞) considers only

the maximum value of the difference between the ideal point and a solution. Similarly, the Achievement
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Scalarization Function (ASF) [366] and a modified version Augmented Achievement Scalarization Function

(AASF) [367] use the maximum of all differences. Furthermore, Penalty Boundary Intersection (PBI) [11]

is calculated by a weighted sum of the norm of the projection of a point onto the reference direction and the

perpendicular distance. Also, it is worth noting that normalization is essential for any kind of decomposition.

All decomposition techniques mentioned above are implemented in pymoo.

7.2.6 Analytics

7.2.6.1 Performance Indicators

The comparison regarding performance is rather simple for single-objective optimization algorithms because

each optimization run results in a single best solution. In multi-objective optimization, however, each run

returns a non-dominated set of solutions. In order to compare sets of solutions, various performance

indicators have been proposed in the past [368]. In pymoo most commonly used performance indicators are

described:

(i) GD/IGD: Given the Pareto front PF the deviation between the non-dominated set S found by the

algorithm and the optimum can be measured. Following this principle, Generational Distance (GD)

indicator [369] calculates the average Euclidean distance in the objective space from each solution in

S to the closest solution in PF. This measures the convergence of S, but does not indicate whether a

good diversity on the Pareto front has been reached. Similarly, Inverted Generational Distance (IGD)

indicator [240] measures the average Euclidean distance in the objective space from each solution in

PF to the closest solution in S. The Pareto front as a whole needs to be covered by solutions from S

to minimize the performance metric. Thus, the lower the GD and IGD values, the better is the set.

However, IGD is known to be not Pareto-compliant [370].

(ii) GD+/IGD+: A variation of GD and IGD has been proposed in [370]. The Euclidean distance is

replaced by a distance measure that takes the dominance relation into account. The authors show that

IGD+ is weakly Pareto compliant.

(iii) Hypervolume: Moreover, the dominated portion of the objective space can be used to measure the

quality of non-dominated solutions [371]. The higher the hypervolume, the better is the set. Instead
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of the Pareto front, a reference point needs to be provided. It has been shown that Hypervolume

is Pareto compliant [241]. Because the performance metric becomes computationally expensive in

higher dimensional spaces, the exact measure becomes intractable. However, we plan to include some

proposed approximation methods in the near future.

Performance indicators are used to compare existing algorithms. Moreover, the development of new

algorithms can be driven by the goodness of different metrics themselves.

7.2.6.2 Visualization

The visualization of intermediate steps or the final result is inevitable. In multi and many-objective opti-

mization, visualization of the objective space is of interest so that trade-off information among solutions can

be easily experienced from the plots. Depending on the dimension of the objective space, different types

of plots are suitable to represent a single or a set of solutions. In pymoo the implemented visualizations

wrap around the well-known plotting library in Python Matplotlib [372]. Keyword arguments provided by

Matplotlib itself are still available, which allows modifying, for instance, the color, thickness, opacity of

lines, points, or other shapes. Therefore, all visualization techniques are customizable and extendable.

For two or three objectives, scatter plots (see Figure 7.5a and 7.5b) can give a good intuition about the

solution set. Trade-offs can be observed by considering the distance between two points. It might be desired

to normalize each objective to make sure a comparison between values is based on relative and not absolute

values. Pairwise Scatter Plots (see Figure 7.5c) visualize more than three objectives by showing each pair of

axes independently. The diagonal is used to label the corresponding objectives.

Also, high-dimensional data can be illustrated by Parallel Coordinate Plots (PCP) as shown in Figure 7.5d.

All axes are plotted vertically and represent an objective. Each solution is illustrated by a line from left to

right. The intersection of a line and an axis indicate the value of the solution regarding the corresponding

objective. For the purpose of comparison, solution(s) can be highlighted by varying color and opacity.

Moreover, a common practice is to project the higher dimensional objective values onto the 2D plane using

a transformation function. Radviz (Figure 7.5e) visualizes all points in a circle, and the objective axes are

uniformly positioned around the perimeter. Considering a minimization problem and a set of non-dominated

solutions, an extreme point very close to an axis represents the worst solution for that corresponding objective
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Figure 7.5: Different visualization methods coded in pymoo.

but is comparably "good" in one or many other objectives. Similarly, Star Coordinate Plots (see Figure 7.5f)

illustrate the objective space, except that the transformation function allows solutions outside of the circle.

Heatmaps (see Figure 7.5g) are used to represent the goodness of solutions through colors. Each row

represents a solution and each column a variable. We leave the choice to the end-user of what color map

to use and whether light or dark colors illustrate better or worse solutions. Also, solutions can be sorted

lexicographically by their corresponding objective values.

Instead of visualizing a set of solutions, one solution can be illustrated at a time. The Petal Diagram

(Figure 7.5h) is a pie diagram where the objective value is represented by each piece’s diameter. Colors are

used to further distinguish the pieces. Finally, the Spider-Web or Radar Diagram (Figure 7.5i) shows the
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values of the objective as a point on an axis. The ideal and nadir point [9] is represented by the inner and

outer polygon. By definition, the solution lies in between those two extremes. If the objective space ranges

are scaled differently, normalization for the purpose of plotting can be enabled, and the diagram becomes

symmetric. New and emerging methods for visualizing more than efficient three-dimensional solutions, such

as 2.5-dimensional PaletteViz plots [378], would be implemented in the future.

7.2.6.3 Decision Making

In practice, after obtaining a set of non-dominated solutions, a single solution has to be chosen for imple-

mentation. Pymoo provides a few “a posteriori” approaches for decision making [9].

(i) Compromise Programming: One way of making a decision is to compute the value of a scalarized

and aggregated function and select one solution based on the minimum or maximum value of the

function. In pymoo, a number of scalarization functions described in Section 7.2.5.4 can be used to

come to a decision regarding desired weights of objectives.

(ii) Pseudo-Weights: However, a more intuitive way to chose a solution out of a Pareto front is the

pseudo-weight vector approach proposed in [9]. The pseudo-weight 𝑤𝑖 for the 𝑖-th objective function

is calculated by:

𝑤𝑖 =
( 𝑓 max

𝑖
− 𝑓𝑖 (𝑥)) / ( 𝑓 max

𝑖
− 𝑓 min

𝑖
)∑𝑀

𝑚=1( 𝑓 max
𝑚 − 𝑓𝑚(𝑥)) / ( 𝑓 max

𝑚 − 𝑓 min
𝑚 )

. (7.1)

The normalized distance to the worst solution regarding each objective 𝑖 is calculated. It is interesting

to note that for non-convex Pareto fronts, the pseudo-weight does not correspond to the result of

an optimization using the weighted-sum method. A solution having the closest pseudo-weight to a

target preference vector of objectives ( 𝑓1 being preferred twice as important as 𝑓2 results in a target

preference vector of (0.667, 0.333)) can be chosen as the preferred solution from the efficient set.

(iii) High Trade-Off Solutions: Furthermore, high trade-off solutions are usually of interest but not

straightforward to identify in higher-dimensional objective spaces. We have implemented the proce-

dure proposed in [379]. It was described to be embedded in an algorithm to guide the search; we,

however, use it for post-processing. The metric for each solution pair 𝑥𝑖 and 𝑥 𝑗 in a non-dominated
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set is given by:

𝑇 (𝑥𝑖 , 𝑥 𝑗) =
∑𝑀

𝑖=1 max[0, 𝑓𝑚(𝑥 𝑗) − 𝑓𝑚(𝑥𝑖)]∑𝑀
𝑖=1 max[0, 𝑓𝑚(𝑥𝑖) − 𝑓𝑚(𝑥 𝑗)]

, (7.2)

where the numerator represents the aggregated sacrifice and the denominator represents the aggregated

gain. The trade-off measure 𝜇(𝑥𝑖 , 𝑆) for each solution 𝑥𝑖 with respect to a set of neighboring solutions

𝑆 is obtained by:

𝜇(𝑥𝑖 , 𝑆) = min
𝑥 𝑗 ∈𝑆

𝑇 (𝑥𝑖 , 𝑥 𝑗). (7.3)

It finds the minimum 𝑇 (𝑥𝑖 , 𝑥 𝑗) from 𝑥𝑖 to all other solutions 𝑥 𝑗 ∈ 𝑆. Instead of calculating the metric

with respect to all others, we provide the option to only consider the 𝑘 closest neighbors in the objective

space to reduce the computational complexity. Based on circumstances, the ‘min’ operator can be

replaced with ‘average’, or ‘max’, or any other suitable operator. Thereafter, the solution having the

maximum 𝜇 can be chosen as the preferred solution, meaning that this solution causes a maximum

sacrifice in one of the objective values for a unit gain in another objective value for it be the most

valuable solution for implementation.

The above methods are algorithmic but require user interaction to choose a single preferred solution.

However, in real practice, a more problem-specific decision-making method must be used, such as an

interaction EMO method suggested elsewhere [380]. We like to emphasize that multi-objective frameworks

should include multi-criteria decision-making methods and support end-users in choosing a solution out of

a trade-off solution set.

7.2.7 Summary of Section 7.2

This chapter has introduced pymoo, a multi-objective optimization framework in Python. We have presented

the overall architecture of the framework consisting of three core modules: Problems, Optimization, and

Analytics. Each module has been described in-depth and illustrative examples have been provided. We have

shown that our framework covers various aspects of multi-objective optimization, including the visualization

of high-dimensional spaces and multi-criteria decision-making to finally select a solution out of the obtained

solution set. One distinguishing feature of our framework with other existing ones is that we have provided

a few options for various key aspects of a multi-objective optimization task, providing standard evolution-
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ary operators for optimization, standard performance metrics for evaluating a run, standard visualization

techniques for showcasing obtained trade-off solutions, and a few approaches for decision-making.

However, the framework can be extended to make it more comprehensive, and we are constantly adding

new capabilities based on practicalities learned from our collaboration with industries. In the future, we

plan to implement more optimization algorithms and test problems to provide end-users with more choices.

Also, we aim to implement some methods from classical literature on single-objective optimization, which

can also be used for multi-objective optimization through decomposition or embedded as a local search.

So far, we have provided a few basic performance metrics. We plan to extend this by creating a module

that automatically runs a list of algorithms on test problems and provides statistics of different performance

indicators.

Furthermore, we like to mention that any kind of contribution is more than welcome. We see our

framework as a collaborative collection from and to the multi-objective optimization community. By adding

a method or algorithm to pymoo the community can benefit from a growing comprehensive framework,

and it can help researchers to advertise their methods. Interested researchers are welcome to contact the

authors. In general, different kinds of contributions are possible, and more information can be found online.

Moreover, we would like to mention that even though we try to keep our framework as bug-free as possible,

in case of exceptions during the execution or doubt of correctness, please contact us directly or use our issue

tracker.

7.3 Summary of the Chapter

This chapter has provided a blueprint for optimization in practice. We have proposed a methodology

following the SOLVeR acronym. While collaboratively solving an optimization problem, each phase is

accompanied by supporting activities such as project management or interdisciplinary communication. The

application of the SOLVeR method has been shown in two case studies. Additionally, we have provided

insights into the software architecture and usage of pymoo, a well-known optimization framework used in

academia and industry. The introduction into the framework has given a fundamental understanding of

the different software components and has been helpful to get end-users started solving their optimization

problem using a standard toolkit.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Summary of Contributions

This thesis has focused on computational expense – an important problem characteristic in practice. In

Chapter 1, we have discussed the origin of time-consuming evaluation functions and why they need to be

addressed when solving real-world optimization problems. Moreover, we have presented the idea of using

surrogates, which is the predominant approach in academia and industry. In Chapter 2, some more basics

and definitions about optimization, different well-known models, and a standard surrogate-based method

were provided. Related literature, including a categorization of existing surrogate-based approaches, was

discussed in Chapter 3. Besides a theme-wise overview of previous works, we have identified current trends of

surrogate-assisted optimization and open issues to be addressed. Chapter 4 first have presented a method that

incorporates surrogate models into different kinds of well-known metaheuristics proposed for single-objective

optimization. By keeping the capability of generalization in mind, this idea was extended to multi-objective

optimization algorithms, as this needs to be commonly solved in practice. In Chapter 5, the optimization of

multiple independently computable and mixed computationally expensive functions was investigated. This

often occurs in practice when the performance assessment (constraints and objectives) of a design requires

running multiple third-party software packages or calculating closed-form equations. We have proposed a

method when all objectives are computationally expensive and the constraints are inexpensive. In such a case,

one wants to ensure that only feasible designs are sent to the time-consuming evaluation function. Moreover,

we have developed an evolutionary algorithm for mixed computationally expensive functions evaluating the

target functions in a specific order that maximizes the information gain in each iteration. In Chapter 6 we have

presented two case studies. First, the optimization of a bi-objective head water jacket design problem with

computationally expensive functions. Second, a constrained bi-objective application exploring the electric

machine design with computationally expensive objectives and inexpensive constraints. Some studies and

projects in this thesis required collaborating with other – sometimes less optimization-literate – researchers.

Thus, we have presented a blueprint for collaborative optimization in Chapter 7. Besides the collaboration,
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implementing the optimization code itself can be quite challenging. As founders and maintainers of an

open-source package (which also was used for the majority of this thesis), we have described the architecture

and usage of our framework focusing on multi-objective optimization.

8.2 Future Directions

Throughout this dissertation, all kinds of questions have been approached in different ways. In the very

end, we would now like to identify possible future research directions, including matters that deserve to be

investigated in more detail.

We proposed a generic methodology for surrogate-assisted optimization applied to unconstrained and

constrained, single- and multi-objective problems in Chapter 4. Even though we tested our method for a

variety of metaheuristics, some additional studies shall broaden the scope of this work further. Furthermore,

the constrained handling for multi-objective optimization problems has demonstrated competitive results to

another algorithm; however, it has room for improvement. Other interesting future research directions are

the behavior of the proposed method with an increasing amount of variables (20 or more) and variation of

the evaluation budget (imitating application evaluations of mediocre or high expense). This raises questions

about the time a surrogate needs to be fitted and the evaluation itself. Throughout this thesis, we assumed that

the expensive evaluation of a solution justified any additional computational burden (for instance, running

a whole surrogate selection procedure for each objective and constraint). However, for mediocre expensive

functions, let us say for one minute, one has to revise if surrogate incorporation is still beneficial.

Heterogeneously expensive evaluations are a practical matter that needs to be paid attention to when

solving a real-world problem. First, our focus was on dealing with different evaluation expenses (for

objectives and constraints) but not the surrogate incorporation itself in Chapter 5. Thus, a future research

direction should be the holistic consideration of both aspects at the same time attempting to solve a real-world

optimization problem directly. For instance, suitable candidates are multi-physics design problems often

requiring multiple software packages to be executed. Moreover, we have assumed that the evaluation time for

each solution’s target is known and is approximately the same for all designs. However, for some simulations,

the evaluation time may vary. For instance, let us assume the configuration of a car controller is optimized

where the simulation takes place until a time threshold has been made or an accident happens. For some

solutions, the evaluation will be relatively quick (an accident happens early). For others, the simulation is
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time-intensive (simulating until the time limit is met; no accident happens). Thus, one cannot generally

order targets by their expensiveness (or as we have proposed, by information gain) but needs to implement a

more sophisticated procedure. Possible research directions are dynamically updating the target’s evaluation

time using a book-keeping approach or another external predictor. One aspect of handling heterogeneous

computing time problems is that you do not know beforehand how much computational time a solution will

take to evaluate a solution. Usually, the time to compute a function may vary with a distribution. Thus,

the allocation of objectives and constraints for the next evaluation may need to be done online with a quick

decision at the end of each evaluation is complete. Such practicalities in scheduling will make the whole

approach even more pragmatic.

Optimization is characterized by interdisciplinarity. In Chapter 2, we analyzed the literature and already

provided a list of a number of application problems in different sciences with the necessity to address

expensive functions. Additionally, we provided two case studies in Chapter 6. Nevertheless, this is a

good starting point more, and more application problems need to be investigated. This future research

direction shall help pin down commonality across research disciplines and further refine the requirements

of surrogate-assisted optimization. Furthermore, because addressing expensive functions is necessary for

solving real-world optimization problems, research and industry can benefit from each other pursuing

collaborative optimization.

Lastly, some closing thoughts on our contributions directly to the community. Pymoo has become a

widely used tool in academia and industry. Over the last years, the framework has become a robust toolkit

for (evolutionary) single- and multi-objective optimization. Many extensions and features are possible

in the future, each addressing a specific problem characteristic. Moreover, the long-term view will require

building a self-sustainable community to incorporate new research approaches and provide a well-maintained

framework to end-users. The community should include internationally well-known optimization researchers

and a group of Python developers taking care of technical matters. A network and an active community

are important factors for keeping an open-source product alive. As pymoo has become one of the standard

tools in Python for multi-objective optimization, we are planning to release another toolkit focusing on the

optimization of expensive functions. The new development shall be based on the findings in this thesis and

depend on pymoo across its optimization components. The new toolkit will directly serve as an extension

for researchers and practitioners to solve computationally expensive optimization problems efficiently.
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APPENDIX A

SCOPUS QUERIES FOR LITERATURE ANALYSIS

In Section 3.2 we performed an analysis of literature related to surrogate-assisted algorithms. We distin-

guished between publications with a focus on the Problem, Method, and Goal. Their corresponding Scopus

queries are listed in Algorithms A.1, A.2, A.3, respectively.

Algorithm A.1: Scopus Query: Problem
1 TITLE ( ( "simulation optimization" OR "simulation-based optimization"
2 OR "expensive black-box" OR "data-driven optimization") AND optimization )
3 AND ( LIMIT-TO ( LANGUAGE,"English" ) )

Algorithm A.2: Scopus Query: Method
1 TITLE ( ( "simulation optimization" OR "simulation-based optimization"
2 OR "expensive black-box" OR "data-driven optimization" OR bayesian OR "model-based"
3 OR "Kriging assisted") AND optimization )
4 AND ( LIMIT-TO ( LANGUAGE,"English" ) )

Algorithm A.3: Scopus Query: Goal
1 TITLE-ABS-KEY ( ( "Efficient Global Optimization" OR "Efficient Global Optimizer"
2 OR "anytime optimization" OR "anytime algorithm" OR "EGO") AND optimization )
3 AND ( LIMIT-TO ( LANGUAGE,"English" ) )
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