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Abstract—The recent advances in evolutionary many-objective
optimization (EMOs) have allowed for efficient ways of finding
a number of diverse trade-off solutions in three to 15-objective
problems. However, there are at least two reasons why the users
are, in some occasions, interested in finding a part, instead
of the entire Pareto-optimal front. First, after analyzing the
obtained trade-off solutions by an EMO algorithm, the user may
be interested in concentrating in a specific preferred region of
the Pareto-optimal front, either to obtain additional solutions in
the region of interest or to investigate the nature of solutions
in the preferred region. Second, the user may already have a
well-articulated preference among objectives and is straightaway
interested in finding preferred solutions. In this paper, we suggest
a reference point based evolutionary many-objective optimization
procedure for achieving both of these purposes. Additionally, we
suggest an extended version of a previously proposed reference-
point based evolutionary multi-objective optimization method.
Our proposed procedures are capable of handling more than
one reference point simultaneously. We demonstrate the working
of our proposed procedures on a number of test and real-world
problems. The results are encouraging and suggest the use of
the concept to other evolutionary many-objective optimization
algorithms for further study.

Index Terms—Reference point approach, interactive multi-
objective decision making, multi-objective optimization, EMO.

I. INTRODUCTION

After developing efficient algorithms for solving two and
three-objective optimization problems [1]–[5], evolutionary
multi-objective optimization (EMO) researchers have sug-
gested new algorithms for handling four and more objec-
tives [6]–[8]. These evolutionary many-objective optimization
(EMnO1) algorithms are designed to find multiple trade-off
solutions with the help of a set of guided reference directions.
The basic idea of these methods is to search for points in
parallel along each reference direction and to be as close to
the ideal point as possible. The whole idea behind finding
multiple Pareto-optimal solutions is that the nature of trade-
off among solutions can be obtained first before choosing
a preferred solution for implementation. However, with the

1EMnO term is introduced here to differentiate from EMO, which is used
for multi-objective optimization.

increase in objective dimensionality, the number of points
needed to represent the true nature of the Pareto-optimal front
increases exponentially. Getting an idea of the shape of the
Pareto-optimal front is one aspect but analyzing a large number
of solutions to finally choose a single preferred solution
becomes cumbersome and almost impossible for decision-
makers (DMs) in a practical application. Thus, it is expected
that DMs will have to settle with a series of optimization
and decision-making tasks to effectively solve many-objective
optimization problems.

If some preference information is available before perform-
ing any optimization task, DMs are, in effect, interested in
finding only a small part of the Pareto-optimal front that
corresponds to their desired preference properties. In this case,
instead of finding the entire Pareto-optimal front, DMs would
expect an EMO algorithm to directly focus its population
members in their preferred region of interest. The existing
EMnO algorithms have not been extended for this focused
search for a part of the Pareto-optimal front. However, there
exists a few past studies on EMO algorithms, which were com-
bined with multi-criterion decision-making (MCDM) ideas for
this purpose.

When absolutely no preference information is available
before optimization, DMs are expected to follow a two-step
procedure in which EMnO algorithms should be applied first to
find a representative set of Pareto-optimal points to its entirety
and then analyze them to finally focus on one or more regions
of interest. While the first task is clearly a many-objective
optimization process, the second task can also be achieved
with another type of optimization task. The latter optimization
task involves finding a number of focused points on one or
more specific parts of the Pareto-optimal region. This latter
optimization task is the main focus of this study in the context
of many-objective optimization. The task can also be used for
another purpose. If the former optimization task through an
EMnO algorithm exhibits a hole, a gap, or finds only a few
solutions in the regions of interest, the latter optimization can
be applied to reveal the true nature of the Pareto-optimal front
in these regions of interest.

In this paper, we extend the idea of reference point



based NSGA-II, developed mainly for solving two and three-
objective optimization problems [9], and propose a reference
point based NSGA-III (or R-NSGA-III) for solving higher
objective problems. Like in R-NSGA-II, we allow multiple
reference points to be considered simultaneously. Since the R-
NSGA-III method is expected to focus on a part of the Pareto-
optimal front, it is likely to be faster than the original NSGA-
III procedure. The working principle of R-NSGA-III is demon-
strated by solving a number of many-objective optimization
test problems and real-world problems. The performance has
also been compared with the existing R-NSGA-II procedure
and with a more balanced version of it. We attempt to highlight
both aspects of the decision-making tasks discussed in the
above paragraph: (i) find more trade-off points in the regions
of interest, and (ii) validate if there exists or does not exist
any Pareto-optimal point in regions where a former EMnO
optimization run has failed to find any solution.

In the remainder of the paper, we discuss the motivation
for finding preferred Pareto-optimal solutions in Section II.
Then, we provide a brief description of a previously-proposed
R-NSGA-II procedure in Section III. A balanced version
of R-NSGA-II procedure to efficiently solve many-objective
optimization problems is presented in Section IV. Thereafter,
we make a brief introduction to the NSGA-III procedure in
Section V and then present our proposed R-NSGA-III proce-
dure in detail in Section VI. Results using these methods are
presented in Section VII. Finally, conclusions of the study and
a number of future study ideas are presented in Section VIII.

II. MOTIVATION FOR FINDING PREFERRED
PARETO-OPTIMAL SOLUTIONS

Most EMO studies have concentrated in finding a repre-
sentative set of the entire Pareto-optimal front, however, in
practice the task of finding a number of trade-off solutions
cannot be the last act. Somehow, a single preferred solution
must be arrived at so that that solution can be implemented
in practice. This decision-making task of choosing a single
preferred solution should not be dismissed as a trivial task,
as the whole multi-criterion decision-making field, started in
early seventies, is still a very much active field for research and
application. We believe that efficient computational algorithms
that are directed by preference information from DMs can be
developed to help choose a single preferred solution in two
ways:

1) Select one of the optimized Pareto solutions by prefer-
ence information provided by DMs, and

2) Take the optimized Pareto solutions as baseline starting
points and then search for new and additional trade-off
points in the regions of interest.

Both the above approaches constitute a two-step procedure
of the complete optimization-cum-decision-making procedure.
While the first approach is relatively easier, here, we focus on
the second approach, which involves an additional optimiza-
tion procedure.

There is another motivation for finding focused solutions.
If the preference-based optimization procedure can be made

computationally efficient, it can be used to analyze and val-
idate different parts of the trade-off frontier obtained by the
EMO procedure. For example, if the first EMO application has
discovered a hole, a gap, or a few points in certain preferred
part of the trade-off frontier, the preference based approach
can focus there and investigate if the initial findings were
really true. Such a computational procedure will provide more
confidence about various regions of interest to the DM, before
choosing a preferred solution.

III. EXISTING EMO METHODS FOR PREFERRED
SOLUTIONS

EMO algorithms for finding a part of the Pareto-optimal
front were suggested before. The use of cone domination
[10], [11] was suggested to find a subset of Pareto-optimal
solutions, but the approach can only be applied to problems
having convex Pareto-optimal front. Branke and Deb [11]
suggested an approach with a projected distance based niching
concept, but it is also not generic enough to be applied to find
any arbitrary part of the Pareto-optimal front. Certain ideas
with modified domination principle were proposed [12], but
they too are not flexible and generically applicable. All these
methods have not been applied to many-objective problems
yet to test their suitability.

Instead of making an elaborate description of different
preference based EMO methods, here, we discuss two methods
which are more generically applicable and are related to
our proposed R-NSGA-III procedure. These methods sug-
gested the use of reference points (or aspiration points) by
the decision-makers [13]–[15]. It is important to note that
aspiration points can be specified anywhere on the objective
space, as desired by the DM. The goal in these studies was
to find Pareto-optimal points which are close to the supplied
aspiration points.

A. R-NSGA-II

First, we provide a brief description of the R-NSGA-II
procedure, suggested in 2006 [?], for finding a preferred part
of the Pareto-optimal front. The preference information was
provided by one or more reference points (or aspiration points)
by following a multi-criterion decision-making (MCDM) ap-
proach originally proposed by Wierzbicki [13] in 1980. The
R-NSGA-II procedure needed an ε-parameter indicating the
minimum distance between two neighboring solutions in the
objective space desired among the final solutions. If a large ε
value is chosen, a large extent of solutions near each reference
point can be obtained, and vice versa.

The R-NSGA-II procedure extends the working of NSGA-
II procedure as follows. Instead of using a crowding distance
based niching selection, as done in NSGA-II, a clearing
based niching was adopted. For every non-dominated front
starting with the first (the best) front, population members
are sorted according increasing normalized Euclidean distance
from every given aspiration point. Then, the closest member
to each aspiration point is assigned the same rank of one.
Thereafter, all population members which are within ε distance



away from rank one members are cleared (meaning that they
are temporarily not considered). The next closest member to
each aspiration point is then assigned a rank of two. Thereafter,
members within ε from rank two members are cleared. This
process is continued until all front members are either assigned
a rank or is cleared. The procedure is then repeated for
the second front members and so on. After all fronts are
considered, the above procedure is then repeated with cleared
population members of the first front and subsequent ranks
are assigned. After repeating for second, third, and so on
fronts, the ranking is done for the remaining cleared points.
This procedure is continued until all population members are
assigned a rank. Finally, a binary tournament selection is
performed on the merged population (parent and offspring)
with the assigned ranks and half the merged population is
chosen for the next generation.

The original study implemented the concept and successful
results on two and three-objective problems were presented.
The effect of the ε parameter was also demonstrated. The idea
also worked on one five-objective and one 10-objective test
problems due to the focused approach despite dealing with
more than three objectives.

IV. PROPOSED BALANCED R-NSGA-II OR BR-NSGA-II

The original R-NSGA-II applied the niching operation in-
dependently to each aspiration point. In some problems, the
process may end up finding unequal number of points for
each aspiration point. We propose a balanced R-NSGA-II (BR-
NSGA-II) approach which makes a better balance of solutions
for each aspiration point.

In BR-NSGA-II method, for the last front which could not
be selected as a whole, solutions closer to each aspiration
point is chosen one at a time by maintaining a distance of
ε as before, but this time the number of points to be chosen
for each aspiration point depends on the number of solutions
that have been already chosen from the previously accepted
better fronts for the aspiration point. The process is balanced.
In the case of two aspiration points (z(1) and z(2)), let us
say that all previously accepted fronts together have n1 = 40
and n2 = 35 points associated with the two aspiration points,
respectively. From the last front, we need to choose remaining
m = 25 points (assuming a population of size 100). Then,
we choose m1 = 10 closest points from z(1), but ε distant
from each other, and m2 = 15 closest points from z(2), but ε
distant from each other. This allows exactly 50% population
members allocated for each of the two aspiration points. Due
to this balanced approach, there is no additional selection
operator used. As another example, if n1 = 60 and n2 = 30,
then all remaining m = 10 points will be selected from the
second list of the final front members, thereby making the
final number is representative solutions as 60 and 40 for two
aspiration points, respectively, thereby making a better balance
of population members for both aspiration points. In the event
of the first non-dominated front being the final front (which
happens after a few generations and quite early for many-
objective optimization problems), there is no earlier solution

(n1 = n2 = 0) assigned to aspiration points and an effort is
made to choose equal number of points for each aspiration
point. It is interesting to note that when a single aspiration
point is supplied, both original R-NSGA-II and the above BR-
NSGA-II are quite the same, except the stochasticity effect of
the binary tournament selection operator used in R-NSGA-
II. Thus, in BR-NSGA-II, the niching operation needs to be
applied only to the last front members and also there is no
need for any selection operator in BR-NSGA-II algorithm.

V. NSGA-III FOR MANY-OBJECTIVE OPTIMIZATION

In 2014, Deb and Jain [7] proposed NSGA-III procedure
which was able to rectify NSGA-II’s inability to extend to
more than three objectives by introducing a guidance through
a number of pre-defined reference directions. The procedure is
briefly described here, as the proposed reference point based
NSGA-III method is based on this approach.

NSGA-III is exactly the same as NSGA-II until the merged
parent and offspring population is applied with its selection
operator. First, a set of H well-distributed reference points
are chosen on a unit hyperplane using Das and Dennis’s
method [16]. Each reference point is joined with the origin
to establish H reference directions in the positive objective
coordinate space. All members of the merged population, at
every generation, are normalized using a systematic extreme
point update strategy mainly by using population-minimum
and population-maximum objective values. Each member is
then associated with a particular reference direction using
the orthogonal distance of a member to a reference direction.
Thereafter, a niching methodology is used to choose a diverse
set of solutions by providing equal emphasis to each reference
direction. No additional selection operator was needed, as the
population size was kept almost the same as the number of
reference directions. NSGA-III algorithm was tested on three
to 15-objective optimization problems and in every case it was
able to find a well-converged and well-distributed set of near-
Pareto-optimal solutions on constrained [8] and unconstrained
[7] problems. For constraints, a constraint-domination based
selection operator [1] was introduced.

VI. PROPOSED R-NSGA-III METHOD

R-NSGA-III extends the NSGA-III procedure [7] by intro-
ducing a new reference point generation method according to
user-supplied aspiration points, while using the same genetic
operators and survival selection process. Say, K aspiration
points are supplied by the user in M -dimensional objective
space (where M is the number of objectives):

r(k) =
(
z
(k)
1 , z

(k)
2 , . . . , z

(k)
M

)
, k = 1, 2, . . . ,K. (1)

Each aspiration point is first normalized using NSGA-
IIIs normalization procedure. Knowing

(
fmin
i , fmax

i

)
for each

objective supplied by the normalization code, we obtain nor-
malized aspiration points as follows:

r̄(k) =
( zk1 − fmin

1

fmax
1 − fmin

1

, . . . ,
zkM − fmin

M

fmax
M − fmin

M

)
, k = 1 . . . K.

(2)



We then compute the intercepts of the unit hyperplane and
the vectors from the ideal point to each normalized reference
point.

ṙ(k) =
(p0 − l0)

r̄(k) · n̂
· r̄(k) + l0, k = 1, 2, . . . ,K, (3)

where n̂ = (1, 1, . . . , 1)T /
√
M , representing the normal vector

for the hyperplane and p0 = (1, 0, . . . , 0)T (one of the
extreme points on the plane). We define l0 as the ideal
point (0, 0, . . . , 0)T representing a point on the line. The new
point ṙk is a point that lies on the unit hyperplane. Next,
H =

(
M+p−1

p

)
Das and Dennis’s points (h(j)) are created on

a unit hyperplane (using a suitable gap p). These points are
then shrunk, using a factor, µ, as follows:

h̄
(j)

= µh(j), µ ∈ (0, 1). (4)

The shrunken Das-Dennis points are then shifted to the unit
hyperplane by using a vector formed using the centroid (g) of
Das-Dennis points and ṙ(k), as follows:

z(j,k) = h̄
(j)

+
(
ṙ(k) − g

)
, (5)

where gi = 1
H

∑H
j=1 h

(j)
i is the centroid of the shrunken Das

and Dennis points.
After the above operation, all the Das and Dennis points will

lie on the unit simplex centered around the projected point ṙk.
The above procedure is repeated for all K supplied aspiration
points one by one. Thus, there will be a total of K∗H reference
points, stored in Za = [zj,k], j = 1, . . . ,H, k = 1, . . . ,K.
Now, we append M extreme points represented by an identity
matrix to the set Za, as follows:

Za = [Za; IM×M ] .

This makes the size of Za to (K · H + M) × M , or a
set with K ′ = (K · H + M) reference points. The extreme
points are added to create extreme Pareto optimal points so the
subsequent normalization process will work well. The NSGA-
III algorithm uses these points as supplied reference points,
Za. Note that there are no additional structured reference
points. The above procedure needs to be applied at every
generation, as the normalization factors (fmin

i , fmax
i ) change

in every generation. At the end of the NSGA-III run, we
consider only the single closest solution for each reference
direction generated by the original reference points, except
the ones corresponding to the extreme reference directions.

Figure 1 illustrates the above procedure for two supplied
aspiration points r̄(k) and r̄(k

′). The points are projected
towards the origin (indicating the ideal point of the problem).
The intersection of the line with the unit hyperplane are the
projected points ṙ(k) and ṙ(k

′), respectively. The shrunken Das
and Dennis points, hj , are then moved on the hyperplane
through their centroid, g, translated to the projected points
ṙ(k) and ṙ(k

′). M extreme points and these H shrunk points
together constitute the entire set of points, Za, on the unit
hyperplane for an NSGA-III run. Thus, R-NSGA-III requires

Fig. 1. A sketch of the R-NSGA-III’s reference point Za computation
procedure.

a population of size of

NIII =

〈(
M +K

(
M + p− 1

p

))
, 2

〉
, (6)

where 〈α, 2〉 means smallest integer greater than α and is
divisible by 2.

VII. RESULTS

In this section, we present the results obtained by the above-
mentioned algorithms on a number of test problems and on
an engineering design problem.

First, we discuss the parameter values used in the study. For
three and five objectives, the shrink factor µ = 0.1 and 0.05
are used, respectively. A reduced µ value is chosen to obtain
close solutions in increasing dimension spaces. For R-NSGA-
II and BR-NSGA-II, we use a population size

NII = s(K +M), (7)

where s is the number of expected points for each aspiration
point, K is the number of aspiration points, and M is the num-
ber of objectives. For DTLZ2 problems we choose ε = 0.02
and for DTLZ4 problems ε = 0.01, except in three-objective
cases, we have used 0.02. For both methods, the maximum
number of generations of 500 is used. In all problems, we
use the SBX operator with probability of 0.9 and an index of
10, and a polynomial mutation [4] with 1/n probability and
an index value of 20. When comparing two algorithms, an
identical number and location of reference points are used.



1) Problem DTLZ2: First, we apply all three methods –
original R-NSGA-II, proposed BR-NSGA-II, and proposed R-
NSGA-III – to three-objective DTLZ2 problem. Two widely
separated aspiration points are chosen: z(1) = (0.4, 0.1, 0.6)T

and z(2) = (0.8, 0.5, 0.8)T . R-NSGA-II and BR-NSGA-II
methods need an ε value to find a diverse set of Pareto-
optimal solutions; we use ε = 0.02. R-NSGA-III requires a
shrink factor to make a dense set of reference points; we use
µ = 0.1. These numbers are arbitrarily chosen, but need to be
coordinated to get a similar distribution, but in this proof-of-
principle study, we use these numbers to simply demonstrate
the working of the proposed algorithms.

For R-NSGA-II and BR-NSGA-II, we use a population of
size N = 10(2 + 3) or 50. For R-NSGA-III, we use p = 5,
so that for each aspiration point, there are

(
H=M+p−1

p

)
or
(
7
5

)
or 21 reference points chosen. For two reference points and
three objectives, the population size using Equation 6 becomes
NIII = 〈(3 + 2× 21), 2〉 or 46.

Figure 2 shows obtained trade-off points using all three
methods. They all are able to find points close to the supplied
aspiration points. The distribution of points by R-NSGA-III is
more structured due to the use two sets of Das and Dennis
points as reference points on the unit simplex close to the
projected aspiration points. However, the distribution obtained
by both R-NSGA-II methods are not structured.

Since R-NSGA-II and BR-NSGA-II provide similar perfor-
mance, for the rest of the problems, we use our proposed
BR-NSGA-III and compare with R-NSGA-III method. Next,
five objective DTLZ2 problems are solved with two aspiration
points. Population sizes of 76 is used for five objectives. Fig-
ure 3 presents the results obtained in parallel coordinate plots
(PCPs). Two reference points z(1) = (0.2, 0.2, 0.2, 0.2, 0.8)T

and z(2) = (0.5, 0.5, 0.5, 0.5, 0.5)T are used. Since the whole
Pareto-optimal front for DTLZ2 problem lie on the hyper-
sphere

∑M
i=1 f

2
i = 1, the closest Pareto-optimal objective

vector (or efficient point) can be estimated for each of these
aspiration points. For the first aspiration point, the objective
vector f = (0.22, 0.22, 0.22, 0.22, 0.88)T and for the second
aspiration point, the objective vector f = 1√

5
(1, . . . , 1)T =

0.45(1, . . . , 1)T are our target efficient points. Both plots show
that solutions close to these estimated objective vectors are
found. The mismatch in the diversity of solutions between
two methods occurs due to the arbitrary choice of ε and µ
values. But the results demonstrate that the proposed BR-
NSGA-II and R-NSGA-III are able to locate true preferred
efficient points for five-objective DTLZ2 problem.

Both methods are able to find solutions close to the es-
timated efficient point, instead of finding the entire Pareto-
optimal front.

2) Problem DTLZ3: Here we solve a 14-variable, five-
objective DTLZ3 problem with one reference point z(1) =
(0.1, 0.5, 0.3, 0.7, 0.1)T using the R-NSGA-III procedure. We
set p = 5 resulting in a population size of 76. DTLZ3 is
a more challenging problem than DTLZ2, Figure 4 shows
pareto-optimal solutions found close to the provided reference
point using the R-NSGA-III method.

3) Problem DTLZ4: DTLZ4 problem is more difficult to
solve than DTLZ2 problem, as it has biased density of
solutions on one part of the Pareto-optimal front. Figure 5
shows the obtained preferred Pareto-optimal solutions using
BR-NSGA-II and R-NSGA-III on three-objective DTLZ4
problem with identical parameter values as in DTLZ2 prob-
lem. The two aspiration points are z(1) = (0.3, 0.2, 0.6)T

and z(2) = (1, 0.5, 0.2)T . The estimated targeted efficient
objective vectors are f (1) = (0.43, 0.29, 0.86)T and f (2) =
(0.88, 0.44, 0.18)T , respectively. Figure 5 indicates that points
close to these target vectors are obtained.

Figure 6 shows the preferred solutions obtained using R-
NSGA-III on five objective DTLZ4 problem with two as-
piration points z(1) = (0.1, 0.2, 0.3, 0.4, 0.5)T and z(2) =
(0.5, 0.4, 0.3, 0.2, 0.1)T . The respective targeted efficient ob-
jective vectors are f (1) = (0.13, 0.27, 0.40, 0.54, 0.67)T and
f (2) = (0.67, 0.54, 0.40, 0.27, 0.13)T for the five-objective
problem. Figures show that points close to these target objec-
tive vectors are found by R-NSGA-III. Similar results were
also found using BR-NSGA-II method. In all these cases,
proposed methods are able to find a concentrated set of
solutions on the Pareto-optimal fronts.

4) Problem WFG5: Next, we apply both of our proposed
methods to WFG5 problem. Figure 7 shows the obtained
solutions with 48 population members with two aspiration
points z(1) = (0.8, 0.4, 3.6)T and z(2) = (1.6, 2, 4.8)T .
Figures 8 shows the corresponding results on five-objective
WFG5 problems with 72 population members.

5) Problem WFG6: Finally, we apply both of our proposed
methods to WFG6 problem. Figure 9 shows the obtained so-
lutions with identical parameter values as in WFG5. Figure 10
shows the corresponding results on five-objective WFG6 prob-
lem. In all these cases, focused solutions close to supplied
aspiration points are found by both methods.

A. An Engineering Problem

Next, we consider the crashworthiness (CRASH) problem
[7], which has five variables and no constraints. In order to
have an idea of the Pareto-optimal front, first, we solve the
problem by using the classical generative method using many
achievement scalarization function (ASF) formulations [13].
There are two large gaps observed on the trade-off front, as
shown in Figure 11. Thus, it becomes a natural decision-
making question to establish whether gaps are truly present
or they are manifestations of the optimization procedure. One
way to answer the question would be to formulate a number
of ASF problems by choosing reference points in the gap area
of the objective space and solve respective single-objective
problems. If the resulting solutions do not fall in the gap, then
it indicates that there is no Pareto-optimal solution in the gap.
This is what was done to start with the generative method and
it seems that there is no Pareto-optimal solution in the gap.
But the methods of this paper stay as other alternative methods
to answer the above question, instead of resorting to a whole
gamut of ASF problems solving using the classical generative
approach. For this purpose, we choose two aspiration points



(a) R-NSGA-II. (b) BR-NSGA-II. (c) R-NSGA-III.

Fig. 2. Three-objective DTLZ2 preferred solutions identified with three methods for two reference points.

(a) BR-NSGA-II. (b) R-NSGA-III.

Fig. 3. Five-objective DTLZ2 preferred solutions (in blue) identified with
R-NSGA-III for two aspiration points, shown in red.

(a) R-NSGA-III.

Fig. 4. DTLZ3 preferred solutions found with R-NSGA-III.

in the gap area and apply both proposed BR-NSGA-II and R-
NSGA-III methods with 68 population members. Figures 11
and 12 show the obtained solutions. It is clear from both plots
that despite providing two aspiration points around the gaps,

(a) BR-NSGA-II. (b) R-NSGA-III.

Fig. 5. Three-objective DTLZ4 preferred solutions found for two aspiration
points.

(a) 5-obj. DTLZ4 using R-NSGA-
III.

Fig. 6. DTLZ4 preferred solutions found with R-NSGA-III.

(a) BR-NSGA-II. (b) R-NSGA-III.

Fig. 7. Three-objective WFG5 preferred solutions found for two aspiration
points.

both of our proposed methods could not find any solution in
the middle of the gaps. This not only confirms the nature of
trade-off front, but it also gives a DM confidence that there
are actual gaps (or holes) in the Pareto-optimal front near the
two aspiration points, raising interesting further analysis.

Figure 13 plots the projected points obtained by the gen-
erative method, two aspiration points and their associated
reference points on the unit simplex. It can be seen that there
exist a number of reference points for both aspiration points
which do not apparently intersect with the the trade-off front
generated by ASF method. Thus, by not finding trade-off
points in the gaps in Figure 12 despite providing emphasis,
R-NSGA-III supports the fact that there are gaps in the trade-
off front. R-NSGA-III then ends up finding certain boundary
points.

The use of an EMO method to first find an idea of the
trade-off frontier and then investigating further the true nature



(a) BR-NSGA-II. (b) R-NSGA-III.

Fig. 8. Five-objective WFG5 preferred solutions found for two aspiration
points.

(a) BR-NSGA-II. (b) R-NSGA-III.

Fig. 9. Three-objective WFG6 preferred solutions found for two aspiration
points.

of certain preferred parts of the frontier using the proposed
reference point based methods will provide the decision-
makers a lot of confidence in the obtained solutions.

VIII. CONCLUSIONS

Multi-objective and many-objective optimization problems
must involve a decision-making task for choosing a single
preferred solution. In this paper, we have extended a previ-
ously suggested reference point based NSGA-II approach to
provide a more uniform emphasis in achieving solutions for all
supplied aspiration points. In addition, we have extended the
recently proposed NSGA-III method with the reference point
concept for the same purpose. After presenting the methods in
detail, we have tested them on a number of three to 5-objective
test problems (DTLZ and WFG problems) with one or more
aspiration points simultaneously. Finally, we have applied

(a) BR-NSGA-II. (b) R-NSGA-III.

Fig. 10. Five-objective WFG6 preferred solutions found for two aspiration
points.

Fig. 11. BR-NSGA-II points for CRASH problem in circles with ε = 0.03.
Reference points are shown in diamond. Points obtained with generative
method are in dots.

Fig. 12. R-NSGA-III points (µ = 0.09) in circles for CRASH.

the proposed methods to a car crashworthiness problem to
investigate if certain parts of the obtained trade-off frontier is
empty or if the prior evolutionary optimization methods have
failed to find any solution there.

Simulation results have worked well in achieving both tasks:
(i) finding more focused trade-off solutions in the regions of
interest, and (ii) validating if a certain part of the trade-off
frontier has any Pareto-optimal solutions or not. The proposed
methods are useful for a complete optimization-cum-decision-
making purpose. If preference information is available in terms
of aspiration points in the objective space, proposed methods
can be applied directly. Otherwise, users can follow a two-
step procedure, first finding a representative set of trade-off
solutions on the entire Pareto-optimal front and then finding
more focused trade-off points in the region of interest.

The study can be extended in a number of different ways.
All translated Das and Dennis reference points on the unit
simplex may not lead to Pareto-optimal solutions, either due
to the presence of infeasible solutions or due to an absence

Fig. 13. Projected reference points on the unit simplex for CRASH indicate
that reference directions will pass through apparent gap locations.



of any Pareto-optimal solutions there. In such cases, there is a
waste of computational effort. Such non-functional reference
points can be identified and relocated near to other reference
points, which have already found non-dominated solutions. In
this proof-of-principle study, we have chosen the shrinkage
factor, µ, arbitrarily, but there is a direct relationship between
the chosen µ and the obtained diversity in solutions in the
objective space. R-NSGA-II and BR-NSGA-II controls the
diversity of final solutions in the variable space, which may
be of interest to certain design related applications. R-NSGA-
III procedure can be modified to ensure a minimum distance
between final solutions in the variable space. Importantly,
if a certain diversity among the final solutions is desired,
adaptive methods of setting the shrinkage factor, µ, need to
be developed. Additionally, in this study, we have provided M
extreme points on the unit simplex as reference points so that
the normalization procedure works well. However, the pro-
posed methods may find non-Pareto-optimal solutions, simply
because certain critical Pareto-optimal solutions are not the
target of the optimization task. It would be interesting to devise
methods that would create critical Pareto-optimal points, either
on the fly, or maintain from initial population, so that reference
point based NSGA-II or NSGA-III methods are more likely
to find Pareto-optimal solutions. The concepts developed with
NSGA-II and NSGA-III can be extended to other evolutionary
multi-objective and many-objective optimization algorithms.
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