
Noname manuscript No.
(will be inserted by the editor)

Handling Constrained Multi-objective Optimization Problems
With Heterogeneous Evaluation Times: Proof-of-Principle
Results

Julian Blank · Kalyanmoy Deb

COIN Report Number 2021018

Received: date / Accepted: date

Abstract Most real-world optimization problems con-

sist of multiple objectives to be optimized and multiple

constraints to be satisfied. Moreover, the performance

assessment of the objective and constraints often re-

quires running different software packages separately

along with evaluating mathematically defined functions

with significantly different (heterogeneous) computing

times. A single software package may compute a func-

tional group of objectives and constraints as a block,

thereby creating a complicated computing pattern in

evaluating a single population member. While much ef-

fort has been made to handle computationally expen-

sive functions in the literature, little attention has been

paid to handle heterogeneously expensive optimization

problems. This paper focuses on efficient and adap-

tive ways to schedule an evaluation of different func-

tional groups of objectives and constraints by utiliz-

ing the potential of offspring population members in

terms of their multi-objective ranks, the accuracy of

low-fidelity models to predict their function values, and

their computing times. Results on a number of uncon-

strained and constrained two and three-objective op-

timization problems show significantly better conver-

gence than non-heterogeneous methods. This proof-of-

principle study must now be extended by taking full

advantage of surrogate-assisted optimization methods

to propose more comprehensive and practical optimiza-

tion algorithms.

Julian Blank
Michigan State University
E-mail: blankjul@egr.msu.edu

Kalyanmoy Deb
Michigan State University
E-mail: kdeb@egr.msu.edu

Keywords Heterogeneously Expensive Functions ·
Multi-objective Optimization · Constrained Optimiza-

tion

1 Introduction

Many real-world optimization problems require the con-

sideration of multiple conflicting objectives to reflect

the complexity of the application [15]. Additionally, the

satisfaction of constraints is necessary to guarantee the

solution found by the optimizer is indeed a feasible so-

lution [30]. Mathematically, an optimization problem

can be defined by

Minimize fm(x), ∀m ∈ 1, . . . ,M,

subject to gj(x) ≤ 0, ∀j ∈ 1, . . . , J,

x
(L)
i ≤ xi ≤ x(U)

i , ∀i ∈ 1, . . . , N,

(1)

where x are the variables to optimize, x
(L)
i and x

(U)
i are

the lower and upper bounds for the i-th variable, fm is

the m-th objective and gj the j-th constraint function.

For brevity, no equality constraints are considered here.

The above mathematical description makes it apparent

that assessing the performance of one design (solution)

x requires evaluating a set of functions: M objective

and J constraint functions. This results in evaluating a

total of M + J functions, from here on, referred to as

target functions.

Because of the multi-disciplinary nature real-world

problems, some of the target functions (a functional

group) may require calling a single third-party soft-

ware, running a simulation [5,34], or other computing-

intensive tasks [25,29]. Depending on the software being

used, the performance assessment might become fairly

time-consuming, for instance, a couple of hours or even

2 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

days [1]. A typical practical optimization problem may

have two to five such functional groups which must be

independently called and evaluated. In addition, there

may be certain simplistic target functions, which are

mathematically defined and are much quicker to com-

pute than the software or simulation codes.

When optimizing computationally expensive func-

tions, special attention needs to be paid to the limited

solution evaluation budget. Over the last decades, re-

searchers have predominantly used surrogate-assisted

optimization methods, where an interpolation or ap-

proximation model of the computationally expensive

target function is utilized during optimization [21]. Most

existing surrogate-assisted algorithms assume that the

values of all target functions (objectives and constraints)

are evaluated within one computing job and become

available only at the end of the most expensive target

evaluation.

A point-based optimization method requires a sin-

gle new solution to be evaluated at a time to complete

an iteration. Thus, the possibilities of exploiting the

heterogeneity in the evaluation time of different target

functions are limited. However, for a population-based

optimization algorithm, such as a generational evolu-

tionary computation (EC) algorithm, a set of offspring

population members must be evaluated to proceed to

the next generation. It is intuitive to realize that if

some target functions are relatively quick to compute in

contrast to others, the partial evaluation of population

members can be utilized to determine if a population

member needs to go through with more expensive tar-

get function evaluations. Thus, there is a need for build-

ing an evaluation plan for handling heterogeneous tar-

get functions for saving computational time, specifically

in a population-based optimization algorithm. This is

the main crux of this paper.

The majority of the surrogate-assisted optimization

methods create new infill solutions based on optimiza-

tion of the surrogate models. This is useful in its own

right in hopefully finding good solutions in a quick com-

putational time. However, since infill solutions are to be

evaluated fully for all target functions before they can

be used to update surrogate models or proceed with

the algorithm, the ideas must be modified for hetero-

geneous target functions to harness the full advantage

of quick partial evaluation of them. Because neither

independently computable nor heterogeneously expen-

sive functions have been a major focus of research in

the past, barring a few studies, [8,3,2], researchers and

practitioners remain using existing optimization meth-

ods by letting the optimizer wait until the calculation

of all targets has finished. In such a case, the most time-

consuming target function determines the waiting time

for a solution to be evaluated entirely [3]. The waiting

is caused by the optimization method not being capable

of processing partial information and results in unused

time slowing down the convergence. Other challenges,

such as managing computational resources, software li-

censes, or dealing with hardware or software failures,

must be addressed when optimizing real-world prob-

lems.

Motivated by such practical optimization challenges,

this paper investigates the optimization of independently

computable and heterogeneously expensive target func-

tions. The heterogeneity raises a few pragmatic ques-

tions about the evaluation procedure itself, taking a

close look at first.

The main contributions of this paper can be sum-

marized as follows.

(i) For the first time, we provide a systematic evalu-

ation procedure of a solution set with multiple in-

dependent targets and target groups for heteroge-

neously expensive problems. This includes splitting

jobs responsible for the granularity of information

and the job scheduling, determining when a piece of

information is available.

(ii) Most existing studies address functions with varying

evaluation times only considered unconstrained bi-

objective or constrained single-objective problems.

We investigate a more general case of constrained

multi-objective optimization problems and identify

the challenges of exploiting independently computable

and heterogeneously expensive functions. From this

analysis, two essential questions emerge: In what

order shall an algorithm evaluate the targets, and

when shall a solution be eliminated despite being

partially evaluated.

(iii) We propose a constrained multi-objective evolution-

ary algorithm that exploits the existence of hetero-

geneously expensive functions. The probability of a

solution’s survival is based on repeatedly perform-

ing an environment selection with different amounts

of error noise. The amount of noise depends on the

observed prediction error of surrogates in the past.

The order of target evaluations is defined by the er-

ror that has been made by predicting the survival

probability and the evaluation time of the target.

(iv) The proposed idea applies to all kinds of evolu-

tionary algorithms incorporating an (environmen-

tal) survival or deciding if a solution will become

a part of the population or be discarded, thereby

avoiding expensive target function computations. More-

over, it considers groups of targets (for instance, the

first objective and third constraint) to be always

evaluated together, which is a requirement often oc-

curring in practice.

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 3

In the remainder of this paper, we first discuss re-

lated work of heterogeneously expensive optimization

and its challenges. Then, we discuss the evaluation pro-

cedure, including the computing jobs and their schedul-

ing in Section 3. In Section 4, we propose an evolu-

tionary algorithm exploiting heterogeneously expensive

objectives and constraints that employs a survival un-

der uncertainty to determine the probability of a solu-

tion being promising to be kept. A comparison of the

proposed framework for unconstrained and constrained

multi-objective algorithms is provided in Section 5. Fi-

nally, conclusions are drawn in Section 6.

2 Related Work

Some effort has been made in the past to investigate the

heterogeneous expensiveness of target functions. Mostly,

bi-objective problems with no constraints have been

considered so far. This implies one objective being com-

putationally inexpensive (cheap) and one being expen-

sive. Since only two target functions are considered, au-

thors also refer to the difference as a delay in evaluating

the objective functions.

The first paper directly addressing heterogeneously

expensive objectives was published by Allmendinger et

al. [3] in 2013. The authors have proposed three dif-

ferent ways of dealing with missing an objective value

caused by such a delay. First, the missing objective

value can be filled by randomly drawing pseudo values

in the boundaries of the objective space (random). Sec-

ond, some Gaussian noise is added to the corresponding

objective value of a randomly chosen individual (be-

ing evaluated on all objectives) and assigned (noise-

based). Third, the missing value is replaced by the near-

est neighbor’s objective values – which can be inter-

preted as fitness approximation – in the design space

being evaluated on all objectives (fitness inheritance).

Moreover, for the evaluation selection, the authors have

proposed to select always the most recently generated

offsprings (sweep selection) or to select them based on a

priority score obtained by full or partial non-dominated

rank (priority selection). The results indicate that the

fitness-inheritance-based pseudo value assignment com-

bined with the sweep selection performs the best.

This initial study has been extended by a num-

ber of schemes for handling the delay of an objective

function [2]. The authors proposed four different ap-

proaches: wait for all objectives to be finished (Wait-

ing); optimize the cheap objective first and evaluate

the expensive objective for the optima found (Fast-

First); use the cheap objective to look ahead at pos-

sible promising offsprings each generation (Brood In-

terleaving); incorporate even more selection pressure

for the expensive objective evaluations by running a

single-objective optimization algorithm on the cheap

objective (Speculative Interleaving); the experimental

study revealed that the performance is affected by the

amount of delay for the objective. Speculative Inter-

leaving turned out to perform well when the termi-

nation criterion is based on a shorter time limit, and

the delay of the objectives is rather significant. Un-

surprisingly, the Fast-First strategy outperformed other

methods when the objectives were highly positively cor-

related. The authors also found out that Waiting and

Brood Interleaving became increasingly competitive with

a longer running time of the algorithms.

In 2018 Chugh et al. have proposed HK-RVEA [11]

an extension of K-RVEA [12] which can handle two ob-

jective functions with different latencies. Moreover, in

contrast to other existing methods, where the expen-

sive objective is predicted by relatively simple approx-

imation, the authors have used Kriging (also known as

Gaussian process), a powerful approximation model fre-

quently used in surrogate-assisted optimization. Signif-

icant changes compared to the original K-RVEA are re-

lated to the training and update mechanism of the sur-

rogate, driven by a single-objective evolutionary algo-

rithm. A comparison regarding bi-objective test prob-

lems with previously proposed approaches [3,2] showed

that HK-KRVEA works especially well in cases with

low latencies.

Thomann et al. have developed the trust region-

based algorithm MHT that employs quadratic approxi-

mations for objectives not being evaluated yet [37]. The

Tammer-Weidner-functional is used for finding descent

directions to make use of the heterogeneity of the ob-

jective functions. The trust region limits the surrogate’s

underlying error and serves as a step size in each iter-

ation. The authors have used the concept of local ideal

points given by the minimum of the local quadratic

model to calculate the search direction in each step. Be-

cause of the limited function evaluation budget and one

computationally expensive function, the goal of this ini-

tial study was to obtain only a single Pareto-efficient so-

lution. In [36] the same authors have proposed a method

that starts from the Pareto-efficient solution found by

MHT and attempts to explore the neighborhood of the

solution further to cover the whole or at least parts of

the Pareto-front.

A surrogate-assisted approach called Tr-SAEA has

been proposed by Wang et al. for heterogeneously ex-

pensive bi-objective problems [38,39]. Inevitably, the

existence of a computationally inexpensive and an ex-

pensive one quickly leads to knowledge asymmetry. Thus,

the authors propose a transfer learning scheme within

a surrogate-assisted evolutionary algorithm to transfer

4 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

knowledge from the fast objective to the slower one.

The transfer is achieved by fitting models where knowl-

edge about the variables and the fast objective serve as

an input. The approach has shown to be more robust

to varying levels of latency and correlation between the

objectives.

Another informative resource about the state-of-the-

art of heterogeneous objectives and future research can

be found in [4]. The article focuses on unconstrained

multi-objective optimization with heterogeneous objec-

tive functions. Heterogeneity is discussed in a general

manner with a focus on the heterogeneity of the eval-

uation times. The authors give an overview of recent

developments and possible gaps in this research direc-

tion.

In [31] independently computable functions in con-

strained single-objective optimization have been inves-

tigated. The authors have proposed eight different con-

straint handling techniques by combining the ranking

of infeasible/feasible solutions, the evaluation type, and

the constraint violation aggregation function. In this

first study, the sequence in which the constraints are

evaluated is determined randomly. Results have shown

that this can already significantly improve the conver-

gence of an optimization algorithm. Later on, the work

has been extended by incorporating a feasibility relax-

ation mechanism to permit constraint evaluation for

potentially important solutions close to the constraint

boundary and by using the feasibility ratio to deter-

mine the sequence for constraint evaluation [32]. By

ordering the constraints based on the likelihood of vi-

olation, computational resources can be saved by stop-

ping to evaluate a solution further as soon as the first

violating constraint is discovered. Instead of using only

knowledge of the feasibility ratio of constraints gath-

ered from the past, a surrogate for predicting a solu-

tion’s likelihood to violate a specific constraint is used

in [33]. Other novelties presented by the authors are

a modified infeasibility-driven ranking for ordering the

partially evaluated solutions and an adaptive switching

between partial and complete evaluation. Whereas the

ranking is essential to give the potentially infeasible so-

lution a chance to survive, the switching guarantees a

minimum amount of entirely evaluated solutions.

A recent study [8] has considered constrained bi-

objective heterogeneous problems. The study assumed

that the problem consists of two functional target groups:

computationally expensive objectives and computation-

ally inexpensive constraints. This is probably one of the

simplest cases, as every solution can be tagged as feasi-

ble or infeasible quickly before deciding to compute the

expensive objective values. Results have shown that us-

ing a surrogate for predicting objectives and exploiting

the inexpensiveness of constraints can significantly im-

prove the performance of an optimization method.

Besides publications directly addressing heteroge-

neously expensive objectives, the connection to related

research directions shall be discussed. One way of ad-

dressing the expensive objective is approximating the

value with a surrogate before doing the time-consuming

evaluation. This introduces a low-fidelity evaluation (us-

ing the approximation model) with an underlying pre-

diction error and a high-fidelity model (time-consuming

but without any error) for the corresponding objec-

tive. Having an objective function with different fidelity

levels is also known as multi-fidelity optimization [22].

However, in contrast to heterogeneously expensive prob-

lems addressed in this paper, in multi-fidelity optimiza-

tion, not only one but multiple functions with often

different expenses exist for the same target. Moreover,

the existence of multiple independently computable tar-

get functions requires to think about the design of dis-

tributed and asynchronous algorithms [37]. Distribut-

ing the evaluation of a set of solutions and their ob-

jectives and constraints on different computing nodes

causes asynchronicity. An implementation has to ad-

dress the asynchronicity, for instance, by waiting for

all information necessary to obtain and returning the

results – the most common implementation in algo-

rithms – or by processing asynchronous events and thus

partial evaluations. Furthermore, the situation of hav-

ing partially evaluated solutions is in a way related to

not considering some objectives or targets temporar-

ily. Some studies have addressed the more specific case

of removing (redundant) objectives for the whole opti-

mization run [10]. In the case of heterogeneous expen-

siveness, one usually knows beforehand what objective

is expensive and, thus, might less frequently be avail-

able for all individuals early on. This changes the view-

point from what objective is being removed to how to

decide whether it is worthwhile to spend time evalu-

ating the time-consuming evaluation of the expansive

objective for some individuals or not. Moreover, access-

ing only partial information of objectives or constraints

is related to analyzing a data set with missing values.

The occurrence of missing values has been studied thor-

oughly in data science and machine learning and thus

is worth having a look at [6].

To the best of our knowledge, the combination of

heterogeneously expensive functions for constrained multi-

objective optimization has not been explored yet. Thus,

this work shall provide a starting proof-of-principle study

for different evaluation times considering both multiple

objectives and constraints and should encourage more

attention in the near future.

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 5

Target Values (V)
Se

t
of

 S
ol

ut
io

ns
 (

X
)

Elementwise (!/𝐸) Batch (!/B)
B

at
ch

 (
B

/!
)

E
le

m
en

tw
is

e
(E

/!
)

function eval(X, V)
for i in 1… |X|
for j in 1 … |V|
enqueue(X[i], V[j])

end

function eval(X, V)
for i in 1… |X|
enqueue(X[i], V)

end

function eval(X, V)
for j in 1 … |V|
enqueue(X, V[j])

end

function eval(X, V)
enqueue(X, V)
end

|J| = |X| ! |V| |J| = |X|

|J| = 1|J| = |V|

(1,1)

(1, 2)

(2, 1)

(2, 2)

(3, 1)

(3, 1)

(X, 1)

(X, 2)

(X, V)

(1, V)

(2, V)

(3, V)

E/E Strategy E/B Strategy

B/E Strategy B/B Strategy

J

J J

J

Objectives and/or Constraints

Fig. 1: Strategies for the evaluation procedure considering a set of solutions X and target values V to be calculated.

3 Background

Before different approaches for optimizing problems with

heterogeneous target functions are discussed, the evalu-

ation process must be looked at systematically. In gen-

eral, the evaluation process itself can be split into two

interdependent parts: i) the jobs being submitted by

the algorithm, and ii) the scheduling of these jobs. We
propose a scheme of different ways for an algorithm

to submit jobs regarding a set of solutions and tar-

get functions for the former. This defines the frequency

and granularity of information the algorithms retrieves.

However, the schedules determine the point of time the

algorithm is notified of the job to be finished. The pur-

pose of the scheduler is to decide what job should be

executed next. Since resources are commonly limited, a

scheduler often uses a job queue or even more sophisti-

cated load balancing techniques. Even though this may

sound like a minor implementation detail, for practi-

tioners running optimization methods in a distributed

computing environment, this can become crucially im-

portant.

3.1 Evaluations Jobs

The frequency and granularity of information the al-

gorithms retrieve opens up new possible ways of asyn-

chronous calculations to efficiently use computing re-

sources. The evaluation of a set of solutions X with

multiple target values V can be achieved in several

ways. For instance, the algorithm can evaluate each so-

lution in X sequentially by submitting a job for each

entry of X separately or a single job containing all so-

lutions in X as a batch. Second, the algorithm can de-

cide what target values each of the jobs should include:
Should it be all targets in V that provide complete in-

formation about a solution, or just a subset of targets?

These choices result in four different ways of packaging

the computation jobs defining how the evaluation takes

place (see Figure 1). We refer to strategy Y/Z where Y

and Z are replaced by E (elementwise) if only a single

value and by B (batch) if multiple solutions are cho-

sen. The naming convention is applied analogously to

Z with respect to the target values. The B/B strategy

is most commonly used, where the algorithm schedules

the calculation of all solutions X and target values V

only once and retrieves the resulting values when the

job has finished. This reduces the number of scheduled

jobs to one; however, it does not allow the algorithm

to retrieve any intermediate information during evalu-

ation. Contrary to scheduling all jobs at once, the cal-

culation can be split into many small jobs using the

E/E strategy. For each solution Xi each target value Vj
a separated job is submitted. The resulting number of

6 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

jobs |J | is equal to |X| · |V |, and the algorithm retrieves

a notification whenever each of the jobs has finished.

Thus, it has the highest frequency and granularity of in-

formation considered in this schema. However, possible

calculations that might be shared across the calculation

of target values are done repeatedly. The E/B strategy

schedules a single solution at a time but multiple tar-

get values, which results in a job list of size |X|. Since

the set of solutions evaluated at a time is usually larger

than the target values, this is the strategy with the sec-

ond most frequency of information. The B/E strategy

submits multiple jobs for each target value but does not

split up the set of solutions. This results in |V | jobs to

be processed. Analogously, the E/E strategy variables

necessary for the calculations of multiple target values

can not be shared. Nevertheless, if some target values

are obtained significantly faster than others, the algo-

rithm is notified without waiting for more computation-

ally expensive target values. It is worth mentioning that

a target v ∈ V can also be a group of targets always

being evaluated together. Each partitioning has bene-

fits and drawbacks regarding their flow of information

to the algorithm and the concrete implementation.

3.2 Job Scheduling

Job partitioning defines the general frequency and gran-

ularity of information, but the time of retrieving pieces

of information remains unknown without concrete tim-

ing. The most straightforward implementation of a sched-

uler is a FIFO or priority queue, allowing new jobs to

be added and retrieving the next job to compute. For

now, let us assume all jobs in the queue are processed

in parallel which requires distributing jobs to at least

|X| · |V | workers.

Further, the optimization problem shall consist of

two objectives, f1 and f2, and one constraint, g1. We

assume different execution times for each target value,

t(f1) for the first and t(f2) for the second objective, and

t(g1) for the constraint. The evaluation times are de-

fined such that t(f1) < t(g1) < t(f2). Figure 2 demon-

strates a possible evaluation procedure for a solution set

of size three. Moreover, it shows the information flow

for the ·/B (E/B and B/B) and ·/E (B/E and E/E)

strategy. The ·/B strategy returns the result given by

the union of all target values V = f1 ∪ f2 ∪ g1 exactly

once. This implies the algorithm is waiting to obtain full

information about all solutions and is idle meanwhile.

The waiting time is given by max(t(f1), t(f2), t(g1)) or

in general by max(t(V1), . . . , t(V|V |)). One single out-

lier (with a rather larger evaluation time) will increase

the overall waiting time and greatly impact the algo-

rithm’s overall performance. In this example, the maxi-

𝑋(")
𝑓!
𝑓"
𝑔!

𝑡 (𝑓!) 𝑡 (𝑔!) 𝑡 (𝑓")! /E
Strategy (X, 𝑓!) (X, 𝑔!) (X, 𝑓")

V = 𝑓! ∪ 𝑓" ∪ 𝑔!
(X,V)

!/B
Strategy

𝑓!
𝑓"
𝑔!

𝑋($)
…

Fig. 2: A comparison of ·/B and ·/E strategies assuming

parallel processing of all jobs.

mum evaluation time is given by t(f2), which is almost

three times larger than t(f1) (see Figure 2). On the con-

trary, the ·/E strategy provides some information to the

algorithm whenever the calculation of a target value has

been finished. Thus, for the three target values the al-

gorithm sends the first notification at t(f1) with f1, the

second at t(g1) with g1 and the third at t(f2) with f2.

This implies that the optimization algorithm retrieves

multiple partial function evaluations at different times,

changing the evaluation schedule by step-wise elimina-

tions, thereby making the optimization task more ef-

ficient. A batch-wise evaluation of targets would not

allow any such advantage.

𝑊(") (𝑋 ! , 𝑓!)

𝑊($)

𝑊(%)

𝑊(&)

(𝑋(!), 𝑓$)

(𝑋($), 𝑔!)

(𝑋($), 𝑓!)(𝑋(!), 𝑔!)

(𝑋($), 𝑓$)

(𝑋(%), 𝑔!)

(𝑋(%), 𝑓!)

E/E Strategy with Scheduling

𝑡! 𝑡" 𝑡# 𝑡$𝑡% 𝑡&
(𝑋 ! , 𝑓!) (𝑋(!), 𝑔!)

(𝑋($), 𝑔!)
(𝑋($), 𝑓!)

(𝑋(!), 𝑓$) (𝑋(%), 𝑔!) (𝑋(%), 𝑓!)
(𝑋($), 𝑓$)

Fig. 3: Job schedule using a queue.

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 7

A different execution of jobs might occur, not as-

suming that a computing unit exists for all jobs simulta-

neously. Figure 3 illustrates a possible execution of jobs

using four instances/worker W1 to W4 using the E/E

strategy. Because the scheduler decides what jobs to ex-

ecute next, no prediction about the availability of target

values can be made. Moreover, the dispatcher will re-

port different amounts of partial information; thus, an

asynchronous algorithm design is desired.

The systematic analysis of the evaluation process

shall help researchers think of possible implementations

and their impact on the algorithm’s design. Based on

the above evaluation strategies for dealing with hetero-

geneously expensive objectives and constraints, we pro-

pose a population-based optimization method with B/E

evaluation strategy, which makes use of partial evalua-

tion of target functions to carefully eliminate evaluation

of expensive targets for potentially inferior population

members, thereby making the overall method compu-

tationally efficient.

4 Proposed Methodology

Most existing algorithms do not particularly exploit the

practical fact that the objectives and constraints are of-

ten independently computable. The independent evalu-

ation usually originates from different software packages

being executed to determine the performance of a solu-

tion. The procedure of assessing the performance of a

solution might be fundamentally different for each soft-

ware package, and thus most of the time, the computing

time will vary. This results in an optimization prob-

lem with independently heterogeneously expensive ob-

jectives and constraints that the optimization method

must evaluate and use.

For most practical problems, at least one of the tar-

get functions involves a time-consuming evaluation pro-

cess (we refer here as high-fidelity evaluations), thereby

causing an optimization run to go on for hours or days.

In order to optimize such problems, surrogate-assisted

optimization methods are prevalent. Using a few high-

fidelity solution evaluations, a surrogate model (an ap-

proximate mathematical function) of each target func-

tion is created. Instead of using high-fidelity expen-

sive target functions, surrogate models are usually opti-

mized to find a set of infill points. Evaluating a solution

using the surrogate models is referred to as low-fidelity

evaluation. The created infill points are evaluated using

high-fidelity target functions, and the surrogate models

are updated. Since the optimization task is performed

on the surrogate models (low-fidelity evaluation), there

is usually a substantial gain in computational time com-

pared to optimization with high-fidelity evaluations. In

general, there is a trade-off between gain in computa-

tional effort and the resulting accuracy of the obtained

solutions in surrogate-assisted optimization methods.

If a few high-fidelity solutions are used to build surro-

gate models, the computational time will be small, but

the resulting surrogate model may be inaccurate. Thus,

optimizing the surrogate models may result in inferior

infill solutions in terms of the high-fidelity target func-

tions. Surrogate-assisted optimization algorithms make

a fine balance between the building cost of surrogate

models and how extensively they are optimized.

However, it is important to note that this paper

does not propose another surrogate-assisted optimiza-

tion algorithm, nor does it plan to compare the pro-

posed methodology with an existing surrogate-assisted

optimization method. Here, we focus on handling het-

erogeneously expensive target functions within an op-

timization algorithm utilizing surrogate models. Thus,

no effort is made to directly find new infill points us-

ing the surrogates. However, instead, models are used

to evaluate new solutions to estimate their expected

target function values without computing them with

high-fidelity evaluation procedures. This is not to say

that built surrogate models cannot be exploited further

beyond the scope of our proposed methodology, and

rather this is something we plan to execute in a subse-

quent study. Here, we address the presence of hetero-

geneity in practical target function evaluations and how

a population-based algorithm can exploit it to come up

with a computationally quick algorithm.

4.1 How to Exploit Heterogeneity of an Optimization

Problem?

Most existing population-based algorithms do not as-

sume target functions are independently computable

and thus wait to update the old population until all new

population members are evaluated for all target func-

tions. If all target functions must be computed simulta-

neously by a single evaluation procedure, or the evalua-

tion time for all target functions is negligible compared

to the desired time for executing an optimization run,

no special treatment for any evaluation schedule is nec-

essary.

However, let us consider that not all target func-

tions can be evaluated as a single block of computation,

rather independent groups of target functions must be

evaluated using different evaluation schemes. Moreover,

some groups of target functions require comparatively

more time to get evaluated compared to other groups,

so there is heterogeneity in the computing efforts. Such

problems are predominant in most practical problems,

including science and engineering. A practical design

8 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

must be evaluated from multi-physics considerations,

such as aerodynamics, fluid mechanics, solid mechan-

ics, aesthetics, and others. In such a scenario, if a new

design is already evaluated to be worse for certain rel-

atively inexpensive target functions, it can be avoided

for further processing within the algorithm and thereby

saving computational time by not evaluating expen-

sive target functions. Importantly, such decisions can

only be made relative to a set of solutions and cannot

be made for a single solution. This is the reason why

EC methods are ideal candidates for handling hetero-

geneous target functions.

For instance, let us assume a genetic algorithm af-

ter a few iterations solving a bi-objective optimization

problem with one constraint. The algorithm has com-

pleted the mating process and created a set of new off-

spring solutions X to be evaluated for two objectives

f1 and f2 and constraint g1. Instead of evaluating all

solutions at once for f1, f2 and g1, only one or mul-

tiple solutions can be chosen from X to retrieve one

target function value at a time, for instance, say, the

constraint g1. Depending on the values of g1, some solu-

tions can be discarded already because they are found

to be infeasible. The more “promising” solutions are

kept and continued to be evaluated on the next target

f1. Analogously, some solutions can be eliminated, and

only a few are finally send to obtain the values f2. By

processing partial information, not all solutions will be

evaluated for all targets, which speeds up the overall

evaluation process. Such exploitation of partial infor-

mation requires answering two elementary questions.

(Q1) Target Order Problem: A relevant question

arises: “In what order should the targets be evaluated?”.
Intuitively, this should depend on the actual evalua-

tion times of target functions and their predicted tar-

get values. For the example discussed above, if com-

putational times are having the following relationships:

t(f1) < t(g1) < t(f2), then an ordering of the targets

by evaluation time should follow least to most expen-

sive, or f1 followed by g1, which is then followed by f2.

But the values of the target functions must also play

an essential role in deciding on the order of evaluation.

Suppose g1 is found to be positive. In that case, this in-

dicates that the solution is infeasible, and a smart algo-

rithm may decide not to evaluate f1 and f2 at all for this

solution to save computational time. That is well and

good, but there is a problem with the above method.

In order to know their relative target function values,

the solution has to be evaluated for all target functions.

If all functions are already evaluated, there is no need

to do any ordering. This rounding argument can be an-

swered by making low-fidelity evaluations of offspring

population members using the current surrogate mod-

els. But since surrogate models are approximate, each

surrogate model may have different prediction accuracy.

Thus, the order of their evaluation should depend on a

solution’s rank in the population-based on its predicted

target values (for example, in multi-objective NSGA-II,

a combination of non-dominated rank and crowding dis-

tance), their accuracy of prediction, and computational

time for high-fidelity evaluation of target functions. De-

spite the importance of g1 in determining the feasibil-

ity of a solution, it may turn out that computation of

cheapest objective function (f1) first is beneficial over

the constraint evaluation to determine if the most ex-

pensive objective (f2) needs to be evaluated at all. A

combined metric for ordering target functions is pro-

vided in Subsection 4.4.

(Q2) Elimination Problem: The next question is as

follows: “Under what circumstances should an offspring

solution be eliminated and not continued to be evalu-

ated for the remaining targets?”. If all targets would

be evaluated for all solutions, then the optimization

method does not make any use of separately computing

solutions. Therefore, some solutions need to be elimi-

nated during the evaluation process. Whereas the order

defines what partial information should be made avail-

able next, the elimination decides whether a solution is

worth keeping and evaluated for more targets. The deci-

sion is based on partial information, where some targets

are evaluated, their high-fidelity values are available,

and a surrogate only predicts others. Another valuable

piece of information is the surrogate accuracy derived

from the past, which helps to judge how reliable the

predictions are.

4.2 Survival Under Uncertainty

An environment selection or survival decides given a

set of solutions which one are the fittest and shall sur-

vive. Under certainty, numerous survivals have been

proposed in the literature, for instance, for unconstrained

single-objective genetic algorithms simply a selection

based on the objective values [23] or in NSGA-II, sur-

vival based on non-dominated sorting and crowding dis-

tance [19]. However, most environmental survivals pro-

posed in the evolutionary computation literature as-

sume that the exact values for objectives and constraints

are known. The goal of the proposed probabilistic sur-

vival is to make existing survival procedures applicable

under uncertainty. With uncertainty, we refer to the

situation that some target values originate from a pre-

diction with an underlying error. Despite the situation

where either all targets are based on predictions or all

are exact, the survival also needs to handle cases of

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 9

Algorithm 1: Probabilistic Survival:

Subset Selection under Uncertainty:

prob surv(P,Q, V, e, γ)

Input: Population P , Offsprings Q, Uncertain
Targets V , Predictions errors e, Iterations γ

/* Repeat the experiment γ times */

1 foreach k ← 1 to γ do
2 αi ← 0 ∀i ∈ (1, . . . , |Q|)
3 M ← merge and copy(P, Q)
4 foreach i← 1 to (1, . . . , |M |) do

/* Add noise for uncertain target */

5 foreach v ∈ V do
6 M [v] = M [v] +N (0, e2v)
7 end

8 end
9 M ′ ← survival(M)

10 foreach i← 1 to (1, . . . , |Q|) do

/* If survived, increase the counter */

11 if Qi ∈M ′ then αi ← αi + 1 ;

12 end

13 end

/* Convert survival counts to probabilities */

14 foreach i← 1 to (1, . . . , |Q|) do αi ← αi/γ ;
15 return α

mixed uncertainty, where some targets are exact, and

some predicted.

The proposed probabilistic survival does not change

an existing survival but calls it repeatedly with some

introduced error noise for predicted targets. The proce-

dure is illustrated in Algorithm 1. Given a parent popu-

lation P , offsprings Q, a set of uncertain targets V , the

average prediction error ev of each target v ∈ V , the

number of iterations the experiment is repeated γ, and

a survival probability αi for each offspring Qi. In total,

the survival under certainty calls the survival consider-

ing certainty exactly γ times. In each iteration, first, the

population P and offsprings Q are merged and copied

to M . Then for each solution, for each uncertain target

v ∈ V Gaussian noise is added N (0, e2v). The popula-

tion, M with error noise, is sent to the survival selec-

tion, and the survivors are assigned to M ′. If solution

i has survived and thus is in M ′, its counter αi is in-

creased by one. Finally, the survival counters αi are

converted to probabilities by dividing by the number of

experiments conducted γ.

With a mix of certain and uncertain targets, the

proposed survival might look as follows. Assuming the

objective space values f1 already have been assessed

using the high-fidelity evaluation, and f̂2 and ĝ1 are

predicted by a surrogate with a known prediction er-

ror of ef̂2 and eĝ1 , respectively. In each iteration, f̂2
is provided with error noise N (0, e2

f̂2
), as well as the

constraint ĝ1 with N (0, e2ĝ1). The outcome of multiple

Algorithm 2: Probabilistic Surrogate-Guided

Mating: prob mating(P,Q, S, e, γ, β)

Input: Population P , Surrogate S, Predictions
errors e, Mating Iterations β, Prob. Surv.
Iterations γ

/* Regular mating used by EA */

1 Q← mating()
2 foreach k ∈ (1, . . . , β) do

/* Double the number of offsprings */

3 Q′ ← Q ∪ mating()

/* Surv. Prob. of each offspring */

4 α← prob surv(P,Q′, V, e, γ)

/* Discard unpromising offsprings */

5 Q← top(Q′, |Q|, α, ’descending’)

6 end
7 return Q

survival experiments with different amounts of intro-

duced error noise for uncertain targets (f2 and g1) lets

us derive the probability of a solution to survive in a

mixed certain and uncertain environment.

4.3 Probabilistic Surrogate-Guided Mating

Given the prediction and the average error for each

target, one can calculate the survival probability α for

each offspring originating from mating. Since the mat-

ing only uses information about the parents and no pre-

dictions, many solutions may have a relatively low sur-

vival probability and might be directly discarded. In

order to increase the survival probability, this informa-

tion can be directly used during mating.

In Algorithm 2 the proposed modified mating is

demonstrated. The overall idea is based on repeating

the original mating procedure mating() multiple (β)

times by only keeping the most promising offspring so-

lutions. Initially, the offspring population Q is created.

Then in each iteration, another offspring population is

merged with it to create Q′. For each solution in Q′,

the survival probability is determined to keep only the

solutions most likely to survive. This is achieved by tak-

ing the top |Q| solutions from Q′ based on a descend-

ing sorting by α. After having the process repeated β

times, the solutions that have repeatedly survived are

returned.

4.4 Heterogeneously Expensive Evolutionary

Algorithm (HE-EA)

The pseudo-code of the proposed Heterogeneously Ex-

pensive Surrogate-Assisted Evolutionary Algorithm (HE-

EA) is shown in Algorithm 3. HE-EA assumes that an

10 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

approximation of evaluation times (ET) for each tar-

get exists beforehand. However, if this should not be

the case, the evaluation time can be kept track of using

a book-keeping approach after evaluating each target.

Initially, a list of all targets V is created where first

all objectives and then all constraints appear. After-

wards, HE-EA creates a space-filling set of designs P .

Then, for each target v ∈ V , the initial population P

is evaluated by calling the high-fidelity evaluation func-

tion evaluate(P,v), the survival error ρv is set to one,

the surrogate Sv is fit, and the mean absolute error ev
is estimated using cross-validation. Cross-validation is

helpful to provide the algorithm an idea of the com-

plexity of each target.

Until the time limit of running the optimization pro-

cedure has been met, the algorithm’s main loop is re-

peated. It starts by performing the mating procedure

to generate the offspring population Q and predict-

ing the objective and constraints predict(S,Q) using

the surrogate S. Analogously, the current population

P is copied to P ′, and the surrogate is used to obtain

approximations. Next, the order in which the targets

are supposed to be evaluated needs to be determined.

The order shall be based on the trade-off between eval-

uation time ET and surrogate error e. The function

order(ET,α) first calculates an indicator value for each

target. We propose a metric called information gain

(IGk) of the k-th target as the survival error (ρk) per

unit evaluation time (ETk), as follows:

IGk =
ρk
ETk

. (2)

Targets with larger information gain are preferred to be

evaluated first and thus, the target evaluation order τ

is given by sorting IG in descending order. To illustrate

the intuition behind this order, let us consider a few

examples where two targets, v1 and v2, are compared

with each other. Assuming both targets have the same

evaluation time ET1 = ET2, but target one has a larger

survival error ρ1 > ρ2. This results in IG1 > IG2 and

the first target to be evaluated first. Intuitively this is

the right decision because the target with a more sig-

nificant estimation error can potentially eliminate more

solutions already and thus save computation time. On

the other hand, let two targets have the same survival

error ρ1 = ρ2, but the first one have a larger evalua-

tion time ET1 > ET2. This results in IG1 < IG2. In this

case, the effort for evaluation is identical, and the tar-

get modeled less accurately is evaluated first. Having

discussed two corner cases where one of the metrics is

equally, the intuition behind information gain as a met-

ric for the target order is that targets that are difficult

to predict by the surrogates or are computationally less

expensive are given preference during evaluation.

Algorithm 3: Heterogeneously Expensive

Surrogate-Assisted Evolutionary Algorithm

(HE-EA)

Input : Evaluation Times ET, Max. Survival Prob.
α(min)

/* Initialize the target vector */

1 V ← (f1, . . . , fm, g1, . . . , gJ)

/* Sample design of experiments */

2 P ← doe()

3 foreach v ∈ V do
4 evaluate(P, v)
5 ρv ← 1.0
6 Sv ← fit surrogate(P, v)
7 ev ← estm mae(S, P, v)

8 end

9 while time left do

/* Create the offspring population */

10 Q← prob mating(P,Q, S, e, γ, β)

/* Prediction of P and Q */

11 Q′ ← predict(S, Q) P ′ ← predict(S, P);

/* The order to eval. targets */

12 τ ← order(ET, ρ)

/* Targets with uncertainty */

13 V (U) ← V

/* Survival prob. before evaluation */

14 α(0) ← prob surv(P ′, Q′, V (U), e)

15 foreach k ← 1 to |V | do
16 v ← V [τk]

/* Evaluate and copy targets */

17 copy(P, P ′, v); evaluate(Q′, v)

18 V (U) ← V (U) \ {v}
19 α(k) ← prob surv(P ′, Q′, V (U), e)

/* Calculate the survival error */

20 ρv ←
∑|Q′|

i=1 |α
(k)
i − α(k−1)

i |
/* Fit target surrogates and calc. e */

21 Sv ← fit surrogate(P, v)
22 ev ← mae(S, P, v)

/* Eliminate unpromising solutions */

23 Q← eliminate(Q,α(k), α(min))

/* If all solultions were eliminated */

24 if |Q| = 0 then break ;

25 end

26 P ← survival(P ∪Q)

27 end

Before starting with the evaluation procedure, the

uncertain targets V (U) are initialized to be all targets

V , and the initial survival probabilities α(0) are ob-

tained by executing the probabilistic survival (see Al-

gorithm 1). The evaluation process of the offsprings

Q loops over the targets V in the order of τ using

the counter variable k. In each iteration, the target

v ← V [τk] is then evaluated for the offsprings and

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 11

𝑓" 𝑓$ 𝑔" %𝑓" %𝑓$ &𝑔"

%𝑓" %𝑓$ &𝑔"

𝑓" %𝑓$ &𝑔"

𝑓" %𝑓$ &𝑔"

𝑓" 𝑓$ 𝑔"

𝑓" 𝑓$ 𝑔"

predict

Evaluate
𝑓!

Copy 𝑓!

Eliminate

𝑓" %𝑓$ &𝑔"

𝑓" %𝑓$ &𝑔"

𝑓" %𝑓$ &𝑔"

Evaluate
𝑔!

Copy 𝑔!

Eliminate

𝑓" %𝑓$ &𝑔"

Evaluate
𝑓"

Copy 𝑓$ 𝑓" 𝑓$ 𝑔"

𝑄

𝑃 𝑃'

Predicted

Exact

𝑃

𝛼(')

𝜌((𝜌))

Probabilistic
Survival

𝜌)(

𝛼(*) 𝛼(+)𝛼(,)

Surrogate-assisted
Mating

𝑄

𝑃'

𝑄

𝑃'

𝑄

𝑃'

Fig. 4: One iteration of HE-EA consisting of an ordered target evaluation (f1, g1, f2) and offspring eliminations.

copied over for the population. After removing the cur-

rent target v from the remaining targets V (U), the new

survival probability α(k) is calculated, and the survival

error ρv determined. The survival error is the mean

absolute error between the two different α’s represents

the error introduced by the prediction of target v. Af-

terward, the surrogate used for the predictions of target

v is updated and its prediction error set. In the end of

each target iteration, offsprings with a survival proba-

bility α
(k)
i ≤ α(min) are eliminated. The elimination of

unpromising offsprings saves time because their evalu-

ation of remaining targets is skipped over.

At the end of the evaluation process, the determin-

istic survival of the remaining fully evaluated offspring

population and the current population is performed. In

some iterations, no offspring might be left due to the

iterative elimination, and one might wonder if the al-

gorithm can be caught in a deadlock. However, in such

iterations, the surrogate for each target has been up-

dated using the already eliminated but partially evalu-

ated offspring solutions. The procedure is then repeated

until the time limit of running the algorithm has been

reached. A time limit as a termination criterion instead

of counting solution evaluation is recommended because

it considers full and partial evaluations of individuals.

Let us have a close look at one iteration of HE-

EA for a bi-objective optimization problem having two

objectives (f1, f2) and one constraint (g1). Let us as-

sume that the target order has been determined to be

(f1, g1, f2). A flowchart diagram illustrates the process

of evaluating the offspring population (see Figure 4).

Initially, the current population P was copied and pre-

dicted by the surrogate to become P ′. This step can

be essential because comparing only predictions with

predictions ensures comparing only apples with apples

and oranges with oranges. However, if all surrogates fit

through the data set exactly, this step is skipped. After

generating the predicted population, the offspring pop-

ulation Q is created by surrogate-guided mating, and

their predictions are available. In the flowchart, targets

predicted by surrogates are shown in blue, and the ones

with exact values are shown in orange. In the first itera-

tion of the elimination-based evaluation, the parent and

the offspring population are predicted by the surrogate,

and the survival probability of α(0) is calculated. After

evaluating the first target v ← f1, the survival proba-

bility a(1) having no error noise for f1 is predicted. The

survival error ρf1 is then determined by the mean ab-

solute error of survival probabilities. Before moving on

to the next target, all offspring members with a(1) less

than a(min) are eliminated. Then, the target evaluation

is continued by evaluating g1, performing probabilistic

survival result in a(2) and updating the surrogate error

ρg1 . Analogously, in the last iteration, f2 is evaluated.

It is worth pointing out that α(3) does not require any

probabilities survival because after having evaluated all

targets, no noise will be added, which results in a de-

terministic survival procedure. Thus, the survival prob-

abilities are either zero or one. Finally, the population

and the fully evaluated offspring population are sent to

the survival operator to determine the population for

the next iteration. Notice that the above algorithm also

degenerates to the single-objective constraint problems

with heterogeneous evaluation times among objective

(f) and multiple constraints (g).

4.5 Surrogate Management

Even though surrogate modeling is not the focus of this

study, a few words need to be said to complete the al-

12 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

gorithm description. In this study, each target value is

modeled independently to avoid any error accumulation

across targets. Thus, in total |M |+ |J | surrogate mod-

els are built [17]. For each target, different surrogate

models are fitted, and then one with the least mean

absolute error is chosen as a predictor. We have used

two different types of models: Radial Basis Functions

(RBFs) [24] and Kriging [27,28]. Each of them is in-

stantiated with different hyper-parameters, resulting in

a list of potential models from which one is selected. It

is worth mentioning that the number of data points for

each model may vary because of partial evaluations. In

order to decrease the computational burden of surro-

gate fitting, in this study, only the previous 200 data

points are considered. The mean absolute error is esti-

mated in each iteration by considering the data points

as the training set and the infill solutions evaluated as

a validation set. This allows a realistic error estimation

in each iteration.

5 Results and Discussions

The capability of the proposed method to exploit in-

dependently computable and heterogeneous expensive

optimization problems shall be examined next.

We have chosen NSGA-II [19] with a population size

of 100 for unconstrained and constrained bi-objective

problems. For problems with three objectives, we have

used NSGA-III [18,26,9] with 91 references directions

originating from uniform weight sampling [14] with a

partition number of 12. For both algorithms, the de-

fault parameter settings proposed in the papers and

defined in their implementations available in the multi-

objective optimization framework in Python called py-

moo [7] is used. In each experiment, three different algo-

rithms are compared with each other: First, the base-

line algorithm without any modifications. This repre-

sents an optimization method waiting for all targets

to be evaluated despite their heterogeneous evaluation

times. Second, a modification of the baseline algorithm

incorporating the Elimination-Based Evaluation (EBE)

with the default mating procedure. The survival prob-

abilities have been assessed by repeating the survival a

hundred times (γ = 100). Thirdly, the complete hetero-

geneously expensive (HE) evolutionary algorithm with

a surrogate-guided mating (β = 30) and elimination-

based evaluation. The consideration of two different

variations shall help to give credit to eliminating un-

promising solutions during evaluation and creating so-

lutions more likely to survive beforehand separately.

Throughout the experiment, we have fixed the mini-

mum survival probability to α(min) = 0.3. Some numeri-

cal experiments that this seems to be a reasonable value

for discarding unpromising individuals. When propos-

ing a new method, the number of hyper-parameters

shall be kept as small as possible. It is worth men-

tioning that in this study, the hyper-parameters γ, β,

and α(min) have an intuitive meaning which helps to set

them properly. Their values were determined through

an empirical study, and the performance of configura-

tions close to the suggested one has shown to be similar.

Thus, no significant sensitivity could be observed.

Table 1: Average IGD values for unconstrained bi-

objective problems from the ZDT test suite. NSGA-II

does not use heterogeneous evaluation time informa-

tion, hence produce identical IGD value for all different

evaluation time combinations.

t(f1, f2) NSGA-II EBE-NSGA-II HE-NSGA-II

ZDT1
(N = 10, M = 2, J = 0)

(1,19)

0.3258 (−)

0.1053 (−) 0.0166 (*)
(5,15) 0.1078 (−) 0.0169 (*)
(10,10) 0.1162 (−) 0.0120 (*)
(15,5) 0.0968 (−) 0.0119 (*)
(19,1) 0.0882 (−) 0.0099 (*)

ZDT2
(N = 10, M = 2, J = 0)

(1,19)

0.6457 (−)

0.1942 (−) 0.0099 (*)
(5,15) 0.2303 (−) 0.0107 (*)
(10,10) 0.2123 (−) 0.0139 (*)
(15,5) 0.2233 (−) 0.0148 (*)
(19,1) 0.2316 (−) 0.0143 (*)

ZDT3
(N = 10, M = 2, J = 0)

(1,19)

0.2009 (−)

0.0854 (−) 0.0376 (*)
(5,15) 0.0930 (−) 0.0474 (*)
(10,10) 0.0777 (−) 0.0348 (*)
(15,5) 0.0597 (−) 0.0324 (*)
(19,1) 0.0540 (−) 0.0194 (*)

ZDT4
(N = 5, M = 2, J = 0)

(1,19)

27.7984 (−)

19.4416 (*) 20.4623 (≈)
(5,15) 21.1689 (≈) 17.5283 (*)
(10,10) 17.7420 (≈) 16.9622 (*)
(15,5) 16.2275 (*) 16.2289 (≈)
(19,1) 14.9382 (*) 15.5179 (≈)

0 (*) 3 (*) 17 (*)
Total 0 (≈) 2 (≈) 3 (≈)

20 (−) 15 (−) 0 (−)

The performance of the proposed methods is as-

sessed on unconstrained and constrained multi-objective

test problems where the time for objective and con-

straint functions has been systematically varied. We

have conducted 11 runs for each problem and algorithm

to address the stochastic behavior of the underlying op-

timization method. All tables presented in this section

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 13

show the average IGD values [13]. The best-performing

algorithm for each problem is marked as the winner

(∗), and other algorithms performing significantly sim-

ilar (Wilcoxon signed-rank test, p = 0.05) are labeled

by (≈), and ones are performing significantly worse by

(−). Moreover, we have denoted the number of vari-

ables by N , the number of objectives by M , and the

number of constraints by J for each problem. Starting

with bi-objective problems, we have used the ZDT [40]

problem suite with the evaluation times for a solution

are fixed to 20 time units. The overall evaluation bud-

get is set to seven hours for ZDT1-3 and to 10 hours

for ZDT4. This equals 13 and 18 generations of fully

evaluated individuals, respectively. For the experiment,

the evaluation time for the first objective is set to 1, 5,

15, or 19, and the second objective to make their sum

be 20. The results are shown in Table 1. First, one can

note that the different evaluation times always lead to

identical results for the baseline algorithm, caused by

the algorithm waiting for all targets to be evaluated be-

fore proceeding. Second, EBE and HE were both able to

outperform the NSGA-II no matter what time variation

of t(f1, f2) has been chosen. By comparing EBE and

HE with each other, one can conclude that increasing

the probability of a solution surviving during mating is

in general helpful. For ZDT1 and ZDT2, much better

results, and for ZDT3, still significantly better results

have been achieved. For ZDT4, none of the methods can

converge close enough to the true Pareto front, given

the limited evaluation budget. Thus, for ZDT4, even

though both methods outperform NSGA-II, no clear

winner can be declared. Altogether, we can conclude

that for the considered unconstrained bi-objective prob-

lems, HE-NSGA-II shows the best results by winning

17/20 test instances and being significantly similar in

the remaining ones.

One benefit of the proposed approach is considering

groups of targets and the capability of extending the

concept of heterogeneously expensive functions to mul-

tiple objectives and constraints. This shall become ap-

parent when discussing the following constrained multi-

objective problems. First, we investigate TNK [35,15],

which has two objectives and two constraints and a dis-

continuous Pareto-front. We have considered all objec-

tives and all constraints, each as a group of targets. The

imitates the real-world scenario of Software A returning

both objective values and Software B the constraints.

The evaluation time variations have been set analo-

gously to the unconstrained bi-objective problems, and

for each run, the time limit is set to three hours. The

results listed in Table 2 show the superiority of EBE

and HE over the NSGA-II. Across all time variations,

EBE and HE converge to the Pareto-optimal set. For

Table 2: Average IGD values for the constrained bi-

objective problem TNK.

TNK
(N = 2, M = 2, J = 2)

t(f ,g) NSGA-II EBE-NSGA-II HE-NSGA-II

(1,19)

0.0214 (−)

0.0034 (*) 0.0043 (≈)
(5,15) 0.0035 (−) 0.0030 (*)
(10,10) 0.0040 (−) 0.0031 (*)
(15,5) 0.0043 (−) 0.0030 (*)
(19,1) 0.0046 (−) 0.0030 (*)

0 (*) 1 (*) 4 (*)
Total 0 (≈) 0 (≈) 1 (≈)

5 (−) 4 (−) 0 (−)

four out of five problems, HE-NSGA-II turns out to be

significantly the best performing method. Interestingly

for t(f, g) = (1, 19) representation, the case of objec-

tives being much less computationally expensive than

constraints, EBE performs marginally better.

For the welded-beam design problem [16], the first

objective f1 is the cost of fabricating the welded beam

and can be written in a closed-form mathematical term.

Thus, it is relatively quick to compute. The second ob-

jective f2 and constraints g1 and g2 are the deflection of

the beam-end and hence belong to the same target func-

tion group. Constraints g4 is less time-consuming, but

g3 is the buckling load, requiring more computational

effort. Following relative computational times are con-

sidered for the target functions: t(f1) = 1, t({f2, g1, g2}) =

12, t(g3) = 12, t(g4) = 1. Again, the time limit has been

set to three hours.

Table 3: Average IGD values for the constrained bi-

objective problem Welded Beam.

Welded Beam
(N = 4, M = 2 ,J = 4)

NSGA-II EBE-NSGA-II HE-NSGA-II

t 0.078 (−) 0.0577 (−) 0.0168 (*)

Overall, the results indicate that HE-NSGA-II per-

forms significantly better than the two competitors.

However, it is also worth mentioning that the differ-

ence between the average IGD values is relatively small.

Some further analysis has shown that is caused by the

{f2, g1, g2} groups of targets being responsible for a rel-

atively high survival prediction error. Therefore, even

though their evaluation is more time-consuming than

others, they are scheduled first when the order of tar-

gets τ is determined. This clearly shows the challenge of

14 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

complex predict target groups being difficult to predict

and time-consuming functions.

Table 4: Average IGD values for the three-objective

problem DTLZ2.

DTLZ2
(N = 10, M = 3, J = 0)

t(f1, f2, f3) NSGA-III EBE-NSGA-III HE-NSGA-III

(28,1,1)

0.2824 (−)

0.1992 (−) 0.0794 (*)
(1,28,1) 0.2053 (−) 0.0806 (*)
(1,1,28) 0.1926 (−) 0.0820 (*)

(25,4,1) 0.2051 (−) 0.0802 (*)
(25,1,4) 0.2077 (−) 0.0791 (*)
(1,25,4) 0.2050 (−) 0.0811 (*)
(4,25,1) 0.2017 (−) 0.0810 (*)
(1,4,25) 0.2015 (−) 0.0825 (*)
(4,1,25) 0.2011 (−) 0.0815 (*)

(15,10,5) 0.2068 (−) 0.0916 (*)
(15,5,10) 0.2095 (−) 0.0957 (*)
(5,15,10) 0.2021 (−) 0.0930 (*)
(10,15,5) 0.2088 (−) 0.0961 (*)
(5,10,15) 0.2049 (−) 0.0889 (*)
(10,5,15) 0.2027 (−) 0.0901 (*)

(10,10,10) 0.2047 (−) 0.1040 (*)

0 (*) 0 (*) 16 (*)
Total 0 (≈) 0 (≈) 0 (≈)

16 (−) 16 (−) 0 (−)

Moreover, the proposed methods shall be analyzed

for a DTLZ2 [20], an unconstrained three objective op-

timization problem. The experiment is set up that the

evaluation times of all objectives f1, f2, and f3 sum

up to 30. In total, we have run the methods for 16

different combinations, varying the expensiveness from

being completely homogeneous (10,10,10) to one objec-

tive being 28 times more computationally expensive to

evaluate than the cheapest function. The time limit for

each run has been set to four hours. The average re-

sults IGD values for all time variations are shown in

Table 4. Whereas EBE improved the performance from

NSGA-III, incorporating a more sophisticated mating

in HE-NSGA-III outperforms the other competitors sig-

nificantly across all problems. This implies that the

prediction of values during the run was quite accu-

rate and that putting some more bias into the offspring

population has shown its effect. Another interesting

fact is that the more heterogeneous the evaluations be-

come, the better are the results. Whereas for homoge-

neous times (10,10,10), HE-NSGA-III achieved an av-

erage IGD value of 0.104, which is decreased to 0.0794

for (28,1,1).

Lastly, some visualizations of objective space from

different optimization problems are discussed. Figure 5

shows the median performing runs for the baseline algo-

rithms (NSGA-II or NSGA-III) and their EBS and HE

variants. We have chosen some representative evalua-

tion times for each problem. The scatter plots confirm

the discussion of the results based on IGD values and

give the reader an idea of the differences in convergence

and diversity to expect by exploiting the heterogeneity.

For ZDT1-3 (see Figure 5a to 5c) one can observe the

significant difference between the baseline approach and

the proposed variants. For ZDT4 (see Figure 5d), the

limit evaluation budget was not sufficient to converge

for any method. It is worth noting that the figure re-

veals that EBE achieves a better diversity than HE.

For Welded Beam (see Figure 5e), HE-NSGA-II can

find more solutions with a smaller value of f1 whereas

for TNK (see Figure 5f), visually, no significant dif-

ference can be observed. For DTLZ2, the Figures 5g

and 5h show that a larger amount of heterogeneity in

fact helps to convergence faster and find a more diverse

set. Another problem where the diversity of solutions

has been shown to be significantly better is the Carside

Impact problem shown in Figure 5i. The problem con-

sisting of three objectives and ten constraints has been

set up so that the objectives are computationally inex-

pensive and the constraints computationally expensive.

Altogether, the visual inspections of the median runs

of the experiment show how the exploitation of hetero-

geneously expensive functions can improve the conver-

gence of an existing algorithm.

6 Conclusions

This study has started by investigating the evaluation

of independently computable functions during optimiza-
tion. Four different strategies for evaluating the objec-

tives and constraints of a solution set have been pro-

posed. The strategy of evaluating a set of solutions

for a specific target (B/E) has been used to handle

constrained multi-objective optimization problems with

heterogeneous evaluation times. The proposed evolu-

tionary algorithm has addressed the order of targets

during evaluation by sorting the targets by the survival

prediction error divided by evaluation time. The dif-

ferently expensive target functions have been exploited

by an elimination-based evaluation which discards par-

tially evaluated solutions based on their likelihood of

surviving. The concept can consider each target func-

tion separately but also handle target groups. This can

especially be useful for practitioners where a software

package returns more than one objective or constraint

to be used in optimization. Moreover, the proposed

approach is applicable to other evolutionary methods

where an elitist environment survival is incorporated.

This has been demonstrated by adding the support of

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 15

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.5

1.0

f 2

NSGA-II EBE-NSGA-II HE-NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) ZDT1-(10,10)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

(b) ZDT2-(1,19)

0.0 0.2 0.4 0.6 0.8

−0.5

0.0

0.5

1.0

1.5

2.0

(c) ZDT3-(5,15)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

(d) ZDT4-(19,1)

10 20 30 40 50
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(e) Welded Beam

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) TNK-(1,19)

0.0
0.5

1.0
1.5

0.0 0.5 1.0 1.5

0.0
0.5
1.0
1.5

NSGA-III EBE-NSGA-III HE-NSGA-III

0.00
0.25

0.50
0.75

1.00
1.25

1.50

0.0
0.5

1.0
1.5

2.0

0.00
0.25
0.50
0.75
1.00
1.25
1.50

(g) DTLZ2-(10,10,10)

0.00
0.25

0.50
0.75

1.00
1.25

1.50

0.000.250.500.751.001.251.50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

(h) DTLZ2-(28,1,1)

25.0
27.5

30.0
32.5

35.0
37.5

40.0
42.5

3.6
3.7

3.8
3.9

4.0

10.75
11.00
11.25
11.50
11.75
12.00
12.25
12.50

(i) Carside Impact

Fig. 5: An illustration of the objective space for different types of unconstrained and constrained multi-objective

problems. The results are based on representative run of the median performance for each problem. The different

expensiveness of target functions and termination criteria are set analogously to the other experiments. The visibly

better red-colored points are obtained using the proposed HE-NSGA-III procedure.

differently expensive targets to two well-known multi-

objective algorithms. Results on unconstrained and con-

strained bi-objective and multi-objective problems in-

dicate that the proposed method can efficiently exploit

the fact of differently time-consuming target functions.

The proposed approach must also be extended in

three directions. First, a further complication of the ex-

pensiveness of target functions is worth investigating.

In this study, the evaluation time of each target func-

tion is kept constant, independent of the solution being

evaluated. However, this does not need to be necessar-

ily the case when solving real-world problems. Besides

requiring a more sophisticated book-keeping approach

of evaluation times, this also introduces another level of

uncertainty to the target ordering problem which needs

to be addressed.

Second, the generational evaluation approach pro-

posed in this proof-of-principle study can be extended

to develop a steady-state method for further gain in

overall computational time. In such a method, each off-

spring member can be evaluated with respect to the

parent population in an appropriate adaptively obtained

order of the target functions. Its acceptance and elimi-

nation can be determined using surrogate models.

Third, this study has focused on how to take advan-

tage of heterogeneous functions for objectives and con-

straints within a population-based optimization algo-

rithm. Although surrogate models are created and used

to determine the order of evaluating target functions

16 Julian Blank, Kalyanmoy Deb [4mm] COIN Report Number 2021018

and eliminating evaluation of some population members

depending on their multi-objective rank and evaluation

time, the surrogate models themselves can be exploited

further in arriving at better infill solutions. We defer

such studies, which will eventually allow a complete

surrogate-assisted heterogeneity-handling EC method

that would be practically viable than the usual all-at-

a-time evaluation-based algorithms. Nevertheless, our

suggestion of a target function ranking scheme based

on a member’s worth in terms of non-domination and

diversity in the population, accuracy of the prediction

models, and actual computational times is unique and

marks a start of the further future studies for solving

heterogeneously expensive problems.

References

1. Ahrari, A., Blank, J., Deb, K., Li, X.: A proximity-
based surrogate-assisted method for simulation-based
design optimization of a cylinder head water jacket.
Engineering Optimization pp. 1–19 (2020). DOI
10.1080/0305215X.2020.1808972

2. Allmendinger, R., Handl, J., Knowles, J.: Multiob-
jective optimization: When objectives exhibit non-
uniform latencies. European Journal of Opera-
tional Research 243(2), 497 – 513 (2015). DOI
https://doi.org/10.1016/j.ejor.2014.09.033

3. Allmendinger, R., Knowles, J.: ‘Hang on a minute’: In-
vestigations on the effects of delayed objective functions
in multiobjective optimization. In: R.C. Purshouse, P.J.
Fleming, C.M. Fonseca, S. Greco, J. Shaw (eds.) Evolu-
tionary multi-criterion optimization, pp. 6–20. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

4. Allmendinger, R., Knowles, J.: Heterogeneous objectives:
State-of-the-art and future research (2021)

5. Anderson, J.D., Wendt, J.: Computational fluid dynam-
ics, vol. 206. Springer (1995)

6. Batista, G., Maria Carolina Monard: An analysis
of four missing data treatment methods for super-
vised learning. Applied Artificial Intelligence 17(5-
6), 519–533 (2003). DOI 10.1080/713827181. URL
https://doi.org/10.1080/713827181

7. Blank, J., Deb, K.: pymoo: Multi-objective Optimization
in Python. IEEE Access 8, 89497–89509 (2020)

8. Blank, J., Deb, K.: Constrained bi-objective surrogate-
assisted optimization of problems with heterogeneous
evaluation times: Expensive objectives and inexpensive
constraints. In: H. Ishibuchi, Q. Zhang, R. Cheng, K. Li,
H. Li, H. Wang, A. Zhou (eds.) Evolutionary multi-
criterion optimization, pp. 257–269. Springer Interna-
tional Publishing, Cham (2021)

9. Blank, J., Deb, K., Roy, P.: Investigating the normal-
ization procedure of NSGA-III. In: K. Deb, E. Good-
man, C.A. Coello Coello, K. Klamroth, K. Mietti-
nen, S. Mostaghim, P. Reed (eds.) Evolutionary multi-
criterion optimization, pp. 229–240. Springer Interna-
tional Publishing, Cham (2019)

10. Brockhoff, D., Zitzler, E.: Are all objectives necessary?
On dimensionality reduction in evolutionary multiob-
jective optimization. In: T.P. Runarsson, H.G. Beyer,
E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao
(eds.) Parallel problem solving from nature - PPSN IX,

pp. 533–542. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2006)

11. Chugh, T., Allmendinger, R., Ojalehto, V., Mietti-
nen, K.: Surrogate-assisted evolutionary biobjective op-
timization for objectives with non-uniform latencies.
In: Proceedings of the genetic and evolutionary com-
putation conference, GECCO ’18, pp. 609–616. As-
sociation for Computing Machinery, New York, NY,
USA (2018). DOI 10.1145/3205455.3205514. URL
https://doi.org/10.1145/3205455.3205514

12. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya,
K.: A surrogate-assisted reference vector guided evolu-
tionary algorithm for computationally expensive many-
objective optimization. IEEE Transactions on Evolution-
ary Computation 22(1), 129–142 (2018)

13. Coello Coello, C.A., Reyes Sierra, M.: A study of the par-
allelization of a coevolutionary multi-objective evolution-
ary algorithm. In: R. Monroy, G. Arroyo-Figueroa, L.E.
Sucar, H. Sossa (eds.) MICAI 2004: Advances in artifi-
cial intelligence, pp. 688–697. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

14. Das, I., Dennis, J.E.: Normal-boundary intersec-
tion: A new method for generating the pareto sur-
face in nonlinear multicriteria optimization prob-
lems. SIAM J. on Optimization 8(3), 631–657
(1998). DOI 10.1137/S1052623496307510. URL
http://dx.doi.org/10.1137/S1052623496307510

15. Deb, K.: Multi-objective optimization using evolutionary
algorithms. John Wiley & Sons, Inc., USA (2001)

16. Deb, K., Goyal, M.: Optimizing engineering designs us-
ing a combined genetic search. In: PROCEEDINGS OF
THE SIXTH INTERNATIONAL CONFERENCE ON
GENETIC ALGORITHMS, pp. 521–528. Morgan Kauff-
man Publishers (1995)

17. Deb, K., Hussein, R., Roy, P.C., Toscano-Pulido, G.: A
taxonomy for metamodeling frameworks for evolutionary
multiobjective optimization. IEEE Transactions on Evo-
lutionary Computation 23(1), 104–116 (2019)

18. Deb, K., Jain, H.: An evolutionary many-objective op-
timization algorithm using reference-point-based non-
dominated sorting approach, Part I: Solving problems
with box constraints. IEEE Transactions on Evolu-
tionary Computation 18(4), 577–601 (2014). DOI
10.1109/TEVC.2013.2281535

19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.:
A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. Trans. Evol. Comp 6(2), 182–
197 (2002). DOI 10.1109/4235.996017. URL
https://doi.org/10.1109/4235.996017

20. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable
test problems for evolutionary multiobjective optimiza-
tion. In: A. Abraham, L. Jain, R. Goldberg (eds.) Evo-
lutionary multiobjective optimization: Theoretical ad-
vances and applications, pp. 105–145. Springer London,
London (2005)

21. Forrester, A.I., Keane, A.J.: Recent advances in
surrogate-based optimization. Progress in Aerospace Sci-
ences 45(1), 50 – 79 (2009)

22. Forrester, A.I., Sóbester, A., Keane, A.J.: Surrogate-
assisted multicriteria optimization: Complexities,
prospective solutions, and business case. Proceedings
of the Royal Society A: Mathematical, Physical and
Engineering Sciences 463(2088), 3251–3269 (2007).
DOI 10.1098/rspa.2007.1900

23. Goldberg, D.E.: Genetic algorithms in search, optimiza-
tion and machine learning, 1st edn. Addison-Wesley
Longman Publishing Co., Inc., USA (1989)

Constrained Multi-objective Optimization With Heterogeneous Evaluation Times 17

24. Hardy, R.L.: Multiquadric equations of topogra-
phy and other irregular surfaces. Journal of
Geophysical Research (1896-1977) 76(8), 1905–1915
(1971). DOI 10.1029/JB076i008p01905. URL
https://doi.org/10.1029/JB076i008p01905

25. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential
model-based optimization for general algorithm config-
uration. In: C.A.C. Coello (ed.) Learning and intelligent
optimization, pp. 507–523. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

26. Jain, H., Deb, K.: An evolutionary many-objective opti-
mization algorithm using reference-point based nondomi-
nated sorting approach, part II: Handling constraints and
extending to an adaptive approach. IEEE Transactions
on Evolutionary Computation 18(4), 602–622 (2014)

27. Krige, D.G.: A statistical approach to some basic mine
valuation problems on the Witwatersrand, by D.G. Krige,
published in the Journal, December 1951 : introduction
by the author (1951)

28. Lophaven, S., Nielsen, H.B., Søndergaard, J.: DACE – a
MATLAB kriging toolbox (2002)

29. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K.,
Goodman, E., Banzhaf, W.: NSGA-Net: Neural archi-
tecture search using multi-objective genetic algorithm.
In: Proceedings of the genetic and evolutionary com-
putation conference, GECCO ’19, pp. 419–427. As-
sociation for Computing Machinery, New York, NY,
USA (2019). DOI 10.1145/3321707.3321729. URL
https://doi.org/10.1145/3321707.3321729

30. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling
in nature-inspired numerical optimization: past, present
and future. Swarm and Evolutionary Computation 1(4),
173–194 (2011)

31. Rahi, K.H., Singh, H.K., Ray, T.: Investigating the use
of sequencing and infeasibility driven strategies for con-
strained optimization. In: 2019 IEEE congress on evolu-
tionary computation (CEC), pp. 1642–1649 (2019). DOI
10.1109/CEC.2019.8790239

32. Rahi, K.H., Singh, H.K., Ray, T.: Feasibility-
ratio based sequencing for computationally effi-
cient constrained optimization. Swarm and Evo-
lutionary Computation 62, 100850 (2021). DOI
https://doi.org/10.1016/j.swevo.2021.100850

33. Rahi, K.H., Singh, H.K., Ray, T.: Partial evaluation
strategies for expensive evolutionary constrained opti-
mization. IEEE Transactions on Evolutionary Compu-
tation pp. 1–1 (2021). DOI 10.1109/TEVC.2021.3078486

34. Szabó, B., Babuška, I.: Finite element analysis. John
Wiley & Sons (1991)

35. Tanaka, M.: GA-based decision support system for multi-
criteria optimization. In: Proceedings of the international
conference on systems, man and cybernetics, vol. 2, pp.
1556–1561 (1995)

36. Thomann, J., Eichfelder, G.: Representation of the
Pareto Front for heterogeneous multi-objective optimiza-
tion 1, 293–323 (2019). DOI 10.23952/jano.1.2019.3.08

37. Thomann, J., Eichfelder, G.: A trust-region al-
gorithm for heterogeneous multiobjective optimiza-
tion. SIAM Journal on Optimization 29(2), 1017–
1047 (2019). DOI 10.1137/18M1173277. URL
https://doi.org/10.1137/18M1173277

38. Wang, X., Jin, Y., Schmitt, S., Olhofer, M.: Transfer
learning for gaussian process assisted evolutionary bi-
objective optimization for objectives with different evalu-
ation times. In: Proceedings of the 2020 genetic and evo-
lutionary computation conference, GECCO ’20, pp. 587–
594. Association for Computing Machinery, New York,

NY, USA (2020). DOI 10.1145/3377930.3390147. URL
https://doi.org/10.1145/3377930.3390147

39. Wang, X., Jin, Y., Schmitt, S., Olhofer, M., All-
mendinger, R.: Transfer learning based surro-
gate assisted evolutionary bi-objective optimiza-
tion for objectives with different evaluation times.
Knowledge-Based Systems 227, 107190 (2021). DOI
https://doi.org/10.1016/j.knosys.2021.107190

40. Zitzler, E., Deb, K., Thiele, L.: Comparison of
multiobjective evolutionary algorithms: Empirical re-
sults. Evolutionary Computation 8(2), 173–195
(2000). DOI 10.1162/106365600568202. URL
https://doi.org/10.1162/106365600568202

