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ABSTRACT
In the last two decades, significant effort has been made to solve
computationally expensive optimization problems using surrogate
models. Regardless of whether surrogates are the primary drivers
of an algorithm or improve the convergence of an existing method,
most proposed concepts are rather specific and not very general-
izable. Some important considerations are the selection of a base-
line optimization algorithm, a suitable surrogate methodology, and
the surrogate’s involvement in the overall algorithm design. This
paper proposes a family of probabilistic surrogate-assisted algo-
rithms (PSA), demonstrating its applicability to a broad category of
single-objective optimization algorithms. The concept introduces
knowledge from a surrogate into an existing algorithm through a
tournament-based procedure and continuing optimization on the
surrogate’s predictions. The surrogate’s involvement is determined
by updating a replacement probability based on the accuracy from
past iterations. A study of four well-known population-based opti-
mization algorithms with and without the proposed probabilistic
surrogate-assistance indicates its usefulness in achieving a better
convergence. The concept should provide a generic and compre-
hensive use of surrogates within an optimization algorithm and
pave the way for new surrogate-assisted algorithms dealing with
challenges in less frequently addressed computationally expensive
functions, such as different variable types, large dimensional prob-
lems, multiple objectives, and constraints.
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1 INTRODUCTION
Many optimization problems in practice are computationally ex-
pensive and time-consuming. On the one hand, the computational
expense for evaluating objective or constraint functions requires
an algorithm to be more careful in selecting new solutions to be
evaluated. On the other hand, it justifies significant more algorith-
mic overhead to find new solutions. Thus, most research focuses

on developing methods that use the additional computational time
to return well-suited solutions. One widely-used technique utilizes
so-called surrogates [22] (or metamodels) to approximate the search
space’s objective and constraint functions. The essential question
is how one or even multiple surrogate models shall be incorpo-
rated into an algorithm’s design and how the surrogate’s prediction
error is addressed [8]. This includes defining the surrogate’s in-
volvement and impact, which is crucial for all surrogate-based
algorithms. Existing methods can be put into one of the following
categories depending on the surrogate’s involvement: influenced,
biased, centered, or non-adaptive (see Figure 1). In the early phase of
surrogate-based optimization, the surrogate was fitted only once and
optimized. Thus, the algorithm’s performance entirely depended on
the accuracy of the surrogate model. In 1998, an adaptive surrogate-
based approach called EGO (Efficient Global Optimization) was
proposed in a seminal publication by Jones et al. [15]. The idea is
based on finding a so-called infill solution in each iteration using
an optimization problem based on the surrogate’s prediction and
uncertainty. This adaptive surrogate-based method was the origin
of all kinds of extensions, for instance new infill criteria dealing
with the surrogate’s uncertainty differently or adding the capability
to optimize more than one objective at a time. The original EGO
and all its extensions have in common that the algorithm design is
centered on the surrogate model and, thus, the surrogate’s accuracy
having a significant impact on the performance. Also, for such a
surrogate-centered approach, all intelligence needs to be put into
the "fit-and-optimize" procedure, making it challenging to design
an algorithm that benefits from decades of research on optimizing
more computationally inexpensive functions.

In contrast to making the surrogate the primary driver of an
algorithm, an existing optimization method could be extended to
utilize surrogate predictions. Researchers refer to such approaches
as surrogate-assisted algorithms, emphasizing the surrogate’s role
as an assistant of an already existing optimization algorithm. The
advantage of such a method is the capability of benefiting from fea-
tures of the underlying algorithm directly. In our schema, surrogate-
assisted algorithms are split up into two categories. On the one
hand, algorithms being influenced by a surrogate playing only a
minor role; on the other hand, surrogate-biased methods where the
algorithm has a bigger impact on the algorithm’s design. Because
the judgment of impact is somewhat subjective, the transitions
between influenced and biased are fluid.
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Figure 1: Different Roles of Surrogates in the Design of an Algorithm.

This paper’s primary contribution is the proposal of a probabilis-
tic surrogate-assisted (PSA) platform to use surrogates in an opti-
mization algorithm in a generic manner. The underlying algorithm
only needs to fulfill minimum requirements, making this a broadly
applicable concept to various methods. Such a general concept shall
provide a suitable alternative to the widely-used EGO approach.
PSA does not require the surrogate model to return an uncertainty
measure but keeps itself track of the surrogate’s accuracy. Thus, it is
in contrast to other surrogate-based algorithms not limited to a spe-
cific type of surrogate model. Another question frequently raised is
a good number of the initial design of experiments, which becomes
a less critical parameter with an underlying baseline algorithm
inducing exploration naturally. Moreover, the proposed method
introduces only three intuitively explainable hyper-parameters dis-
cussed in detail. Altogether, this study addresses various essential
research questions of surrogate-assisted optimization raised over
the last years.

In the remainder of this paper, we first discuss related work of
surrogate-assisted optimization and its challenges. In Section 3,
we propose the probabilistic surrogate-assisted concept and its
components. A comparison of the proposed algorithm family with
their underlying baseline and other state-of-the-art surrogate-based
methods is provided in Section 4. Finally, conclusions are drawn in
Section 5.

2 RELATEDWORK
While many surrogate-based algorithms have been proposed for a
specific problem or a problem class, only a few studies focused on
more general approaches.

In 1998, Jones et. al. has proposed a methodology for efficient
global optimization, which has significantly influenced the research
direction of surrogate-based optimization [15]. In his seminal work,
Kriging [18] is used as a surrogate, which provides, besides pre-
dictions, a measure of uncertainty. The prediction and uncertainty
together define the so-called acquisition functions (or infill criteria),
such as the expected improvement [15] or probability of improve-
ment [14]. One critical requirement for acquisition functions is to
balance exploitation and exploration. The optimization of the acqui-
sition function results in an infill solution, which is first evaluated
and then added to the model. The procedure is repeated until a
termination criterion is met. The limitation of finding only a single
new solution in each iteration has been investigated thoroughly,
and multi-point EGO approaches [3, 4, 25] have been proposed.

Moreover, the concept has been generalized to solve multi-objective
optimization problems by using decomposition [17] or replacing
the objective with a performance indicator based metric [21]. The
idea has also been extended to handle constraints, which is espe-
cially important for solving real-world optimization problems [2].
Because much effort has been made to extend the initially proposed
concept, this can be considered a rather general approach. How-
ever, because of the large number of variants addressing one or
multiple initial limitations, it can be challenging to find a suitable
implementation when facing real-world optimization problems.

In 2007, Lim et al. proposed a generalized framework that unifies
diverse surrogate models synergistically in a genetic algorithm’s
local search [19]. The algorithm aims to benefit from the “bless of
uncertainty” by using ensemble and landscape smoothing surro-
gate models and replaces solutions using Lamarckian learning. The
generalization is based on proposing an algorithm that solves real-
world single and multi-objective optimization problems robustly.
Results on complex problems with a multi-modal fitness landscape
indicate that this general approach shows competitive performance
to other surrogate-assisted algorithms.

In 2019, Cai et al. [6] proposed a concept incorporating a surrogate-
based pre-screening and local search strategy. The surrogate’s ap-
proximation error is addressed by a trust-region method. Besides a
surrogate-based local search, the evolutionary algorithm’s mating
is biased by replacing one parent with the best performing (based
on surrogate predictions) solution in a randomly chosen solution’s
neighborhood. The proposed method showed promising results on
a variety of low and high-dimensional test problems. The applica-
bility of the concept to all kinds of algorithms based on evolution
with local searches makes this a generalizable concept.

Most existing studies focus on generalizing surrogate-assisted
optimization by proposing one concept that suits different kinds
of optimization problems. However, mostly one specific type of
algorithm is chosen, and surrogate-bias is added by modifying the
underlying operations or adding a local search. A surrogate-assisted
concept being only applicable to one specific algorithm makes it
challenging to benefit from research on optimizing computationally
inexpensive functions. Thus, researchers have noted that quite
common challenges, for instance, handling multiple objectives at
a time or the existence of constraints, need to be investigated in
more detail for computationally expensive problems [23].



3 METHODOLOGY
The overall outline of the algorithm is shown in Algorithm 1. The
PSA concept requires a baseline algorithm𝐴which implements two
methods – infill() and advance(X,F). For instance, for genetic
algorithms, this corresponds to the mating and environmental sur-
vival, or in particle swarm optimization to applying the swarm equa-
tions and replacing the personal if a better solution has been found.
Moreover, three hyper-parameters, 𝛼 , 𝛽 , and 𝜌 (max) are passed to
balance the surrogate’s influence on the baseline algorithm. First,
the design of experiments 𝑋 (doe) are generated in a space-filling
manner and evaluated 𝐹(doe) using the time-consuming evaluation
function (Line 1). An iterative procedure introducing surrogate bias
to the baseline algorithm continues until the user-defined termina-
tion criterion is met. Each iteration begins with asking the baseline
algorithm for new infill solutions. All steps from there on until the
evaluation of 𝑋 and the advancement of the algorithm (Line 28
and 29) aim to introduce surrogate bias. The surrogate bias consists
of two phases: the 𝛼-phase with a light influence using a tourna-
ment selection based on surrogate predictions (Line 6 to 12); and
the 𝛽-phase simulating the algorithm for a number of generations
on the surrogate and accepting solutions with the probability 𝜌

derived from the surrogate’s accuracy (Line 13 to 27).

3.1 Influence of Surrogate through
Tournament Selection Pressure (𝛼)

A well-known concept in evolutionary computation to introduce
a bias towards more promising solutions is tournament selection.
An individual from the population has to win a tournament to be
selected to contribute to the mating process. The number of com-
petitors (𝛼) balances how greedy the selection procedure shall be.
On the one hand, a larger value of 𝛼 allows only elitist solutions
to participate in mating, while a smaller value introduces a light
selection pressure. For genetic algorithms, the most frequently used
tournament mode is the binary tournament (𝛼 = 2), which com-
pares a pair of solutions regarding one or multiple metrics. For
example, a standard binary tournament implementation for con-
strained single-objective optimization declares the less infeasible
solution as the winner if one or both solutions are infeasible or
otherwise returns the solution with the smaller function value.

The tournament concept is made use of to introduce a surro-
gate bias while creating new infill solutions. Whereas in genetic
algorithms already evaluated solutions are compared, no exact in-
formation about the individual’s fitness yet exists in PSA at the
time of comparison. Thus, the surrogate serves as a referee in a
tournament by providing approximation values for each individ-
ual. In Figure 2 surrogate-assisted tournament selection with three
competitors (𝛼 = 3) for four infill solutions is shown. Initially, the
algorithm’s infill function has been called three times to gen-
erate 𝑋𝛼1 , 𝑋𝛼2 , and 𝑋𝛼3 . Then, a tournament takes place where
the 𝑖-th solutions of the 𝑗-th infill solution set 𝑋𝛼 𝑗

𝑖
compete with

each other. For instance, for the first tournament the winner of𝑋𝛼1
1 ,

𝑋
𝛼1
2 , and 𝑋

𝛼1
3 has to be declared. As a comparison function, the

surrogate’s approximation function 𝐹
𝛼 𝑗

𝑖
is used. In general, setting

𝛼 = 1 disables the tournament selection and serves as a fallback.
By involving the surrogate in the tournament selection (𝛼 > 1),

Algorithm 1: PSA: A family of Probablistic Surrogate-
Assisted Algorithms
Input :Algorithm 𝐴 with infill() and advance(X, F)

Surrogate Tournament Pressure 𝛼 (≥ 1)
Number of Simulated Iterations 𝛽 (≥ 0),
Maximum Surrogate-Bias 𝜌 (max) (≥ 0.0)

/* Sample Design of Experiments (DOE) */

1 𝑋 (doe) ← doe(); 𝐹 (doe) ← evaluate(𝑋 (doe))
2 while has_terminated() do

/* Default infill solutions from baseline algorithm */

3 𝑋 ← A.infill()

/* Fit a surrogate and predict values for infills */

4 𝑆 ← fit(𝑋 (doe), 𝐹 (doe))
5 𝐹 ← 𝑆.predict(𝑋 )

/* Surrogate-assisted Tournament Pressure (𝛼) */

6 foreach 𝑘 ← 2 to 𝛼 do
7 𝑋𝛼𝑘 ← A.infill()

8 𝐹𝛼𝑘 ← 𝑆.predict(𝑋𝛼𝑘 )
9 foreach 𝑗 ← 1 to size( 𝐹𝛼𝑘 ) do
10 if 𝐹𝛼𝑘

𝑗
< 𝐹 𝑗 then 𝑋 𝑗 ← 𝑋

𝛼𝑘
𝑗

; 𝐹 𝑗 ← 𝐹
𝛼𝑘
𝑗

;
11 end
12 end

/* Bias by Continuing the Algorithm on Surrogate (𝛽) */

13 𝐴′ ← copy(A)

14 𝑋 𝛽 ← 𝑋 ; 𝐹 𝛽 ← 𝐹

15 foreach 𝑘 ← 1 to 𝛽 do
16 𝑋 𝛽𝑘 ← 𝐴′.infill()

17 𝐹 𝛽𝑘 ← 𝑆.predict(𝑋 𝛽𝑘 )
18 foreach 𝑗 ← 1 to size( 𝐹 𝛽𝑘 ) do
19 𝑖 ← closest(𝑋 𝛽𝑘

𝑗
, 𝑋 𝛽 )

20 if 𝐹 𝛽𝑘
𝑗

< 𝐹
𝛽

𝑖
then 𝑋

𝛽

𝑖
← 𝑋

𝛽𝑘
𝑗

; 𝐹
𝛽

𝑖
← 𝐹

𝛽𝑘
𝑗

;
21 end
22 𝐴′.advance(𝑋 𝛽𝑘 , 𝐹 𝛽𝑘 )
23 end
24 𝜌 ← min(estm_surr_bias(S), 𝜌 (max) )
25 foreach 𝑗 ← 1 to size(𝑋 𝛽 ) do
26 if random() < 𝜌 then 𝑋 𝑗 ← 𝑋

𝛽

𝑗
;

27 end

/* Next iteration of the overall algorithm */

28 𝐹 ← evaluate(𝑋 )
29 𝐴.advance(𝑋, 𝐹 )
30 𝑋 (doe) ← 𝑋 (doe) ∪𝑋
31 𝐹 (doe) ← 𝐹 (doe) ∪ 𝐹
32 end

the infill solutions 𝑋 get a smaller or larger influence based on the
number of competitors.

3.2 Continue Optimization on Surrogate (𝛽)
Whereas the tournament is an effective concept to incorporate the
surrogate’s approximation, it is limited by looking only a single
iteration into the future. To further increase the surrogate’s impact,
the baseline algorithm is continued to run for 𝛽 more consecu-
tive iterations on the surrogate’s approximations. Inevitably, the
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Figure 2: Tournament selection with 𝛼 competitors to create
a surrogate-influenced infill solutions.

question of how many iterations are suitable arises and indicates
the importance of tuning 𝛽 . Nevertheless, even more critical, how
shall the algorithm profit from simulating the algorithm on the
surrogate? An inappropriate choice of 𝛽 will cause the surrogate’s
optimum repeatedly to be found and discarding the baseline algo-
rithm’s default infill procedure entirely. Automatically, this also
causes a diversity loss of infill solutions and does not account for the
surrogate’s approximation error. Thus, we propose a probabilistic
surrogate-assisted approach that balances the surrogate’s impact
on the baseline algorithm to address these issues.

The probabilistic procedure is described in Algorithm 1 from
Line 13 to 27. Because the iterations are only simulated on the
surrogate, the original algorithm object must be copied to avoid
any modifications of the current algorithm’s state (Line 13). Then,
the algorithm is continued on the surrogate model for 𝛽 iterations,
by calling in each iteration 𝑘 the infillmethod returning𝑋 𝛽𝑘 and
feeding back to the algorithm the approximations 𝐹 𝛽𝑘 by calling
advance (Line 16, 17 and 22). The goal of these iterations is to
introduce more surrogate-bias into𝑋 . Therefore, a surrogate-biased
population 𝑋 𝛽 is obtained by initializing 𝑋 𝛽 = 𝑋 and 𝐹 𝛽 = 𝐹

(Line 14) and assigning in each iteration (𝑘) every solution 𝑋
𝛽𝑘
𝑗

to
its closest solution 𝑖 in𝑋 𝛽 . The closest solution is determined based
on the smallest (normalized) Euclidean distance in the design space.
The infill 𝑋 𝛽

𝑖
and the corresponding prediction 𝐹

𝛽

𝑖
is replaced if the

newly found solution performs better considering the surrogate’s
prediction. Finally, a biased candidate solution 𝑋 𝛽

𝑗
replaces 𝑋 𝑗 with

probability 𝜌 bounded by 𝜌 (max) . Clearly, the value of 𝜌 determines
the impact of the 𝛽-phase on the baseline algorithm.

An exemplary with five iterations (𝛽 = 5) and four infill solutions
𝑋1, 𝑋2, 𝑋3, and 𝑋4 is also illustrated in Figure 3. Calling the infill
function of the baseline algorithm results in five solution sets with
four solutions each. When running the algorithm, the assignment
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Figure 3: Continue Running the Algorithm for 𝛽 Iteration
on the Surrogate.

takes place, and for instance,𝑋1 has four solutions being the closest
to, and 𝑋4 has six. The assignment of the closest solution will show
cluster like arrangements and preserve diversity.

In general, optimizing the surrogate model is a common tech-
nique used in surrogate-assisted algorithms. However, a crucial
aspect is addressing the utilization of knowledge from these itera-
tions. An assignment-based and probabilistic approach keeps the
balance between the default algorithm’s behavior and surrogate
bias. The strategy to determine the ”bottleneck“ variable 𝜌 of the
𝛽-phase is described next.

3.3 Balancing the Utilization of Surrogate (𝜌)
The number of infill solutions being finally biased by 𝛽 iterations on
the surrogate is critical and balances the whole surrogate’s involve-
ment. In industry projects finding a suitable surrogate can be rather
challenging and is often done manually. Comparing different types
of surrogates and selecting the most suitable one is usually based
on a metric which judges a model’s trustworthiness. A well-known
metric to estimate the accuracy is the coefficient of determination
(also known as 𝑅2):

𝑅2 = 1 −
∑
𝑖 (𝑦𝑖 − 𝑓𝑖 )2∑
𝑖 (𝑦𝑖 − 𝑦)2

= 1 − MSE(𝑦, 𝑓 )
MSE(𝑦, 𝑓 𝑦)

(1)

where𝑦𝑖 represents the output and 𝑓𝑖 the prediction of the 𝑖-th value,
and 𝑦 the arithmetic mean of all output values. The denominator∑
𝑖 (𝑦𝑖 − 𝑦)2 = MSE(𝑦, 𝑓 𝑦) represents theMean Squared Error (MSE)

of a surrogate 𝑓 𝑦 always predicting the average of all output values.
This error serves as the normalization constant for coefficient of
determination. For a surrogate performing worse than 𝑓 𝑦 , the right-
hand side of the equation results in a value greater than 1 and, thus,
𝑅2 becomes negative. If the surrogate performs equally good the
value is zero and otherwise positive. The upper bound of the 𝑅2

metrics upper bound is 1, which could theoretically be reached with



an MSE of zero. These characteristics turn out to be very suitable
for defining a probability and thus have been the inspiration for
balancing the surrogate-bias.

The replacement probability 𝜌 is given by bounding 𝑅2 on the
lower end to zero:

𝜌 = max

(
0, 1 − MSE(𝑦, 𝑓 )

MSE(𝑦, 𝑓 𝑏 )

)
(2)

where 𝑓 𝑏 represents a baseline predictor. The formula of 𝜌 gen-
eralizes the definition of 𝑅2 by considering an arbitrary baseline
predictor 𝑓 𝑏 instead of 𝑓 𝑦 . Given that 𝑅2 has an upper bound of one
and it is at least zero, 𝜌 ∈ (0, 1) holds and thus is a valid probability.

But what does 𝜌 as a metric defining the surrogate-bias imply in
the context of an algorithm’s iteration? If the surrogate performs
worse than 𝑓 𝑏 (𝜌 = 0), no solution will be replaced. On the op-
posite, if the surrogate has no prediction error, all solutions will
be surrogate-biased. Even more importantly, if none of these two
extreme cases occur, the value of 𝜌 and therefore the surrogate-
bias will be adjusted proportional to the accuracy of the model
normalized by the performance of 𝑓 𝑏 . In our implementation, we
chose a 𝑘-nearest neighbor model (𝑘 = 𝑛 + 1 where 𝑛 represents the
number of variables) as a baseline predictor 𝑓 𝑏 and average 𝜌 over
the last five iterations (sliding window). For estimating the model’s
accuracy, we use all data points observed until the last generation
as training and newly evaluated infill solutions as a validation set.
In the initial iteration where only the design of experiments and
no infill solutions exist, a 𝑘-fold cross-validation is performed. Our
experiments have shown an assessment of the surrogate predic-
tion error is essential and, thus, directly incorporating it into the
algorithm design recommended.

3.4 Surrogate Management
The algorithm’s outline has already shown that the surrogate model
has to be fitted through data points and is used as a predictor
for new infill solutions. In general, all matters related to fitting
or updating a surrogate is referred to as surrogate management.
It is noteworthy that in practice, not only a single but multiple
surrogates are recommended to provide a more robust model with
less approximation error. With multiple surrogates, we refer not
only to the type of surrogate but also concrete hyper-parameters.
In our implementation, in total 15 surrogates, consisting of the
model types RBF [13] and Kriging [18], are validated. The hyper-
parameters instantiatemodels with differentmean functions, kernel,
and noise. Finally, the model with the highest 𝜌 value is chosen. On
the one hand, an increasing number of points from optimization
increase the time spent for surrogate management and, on the
other hand, can lead to precision issues. The precision issues are
caused by solutions by very close to each other in the design space.
Thus, we employ an 𝜖-clearing approach, which always selects
the solution with the smallest function value and then clears all
solutions with less than 𝜖 distance to it (𝜖 = 0.005). We reduce the
overall amount of points by only considering the 200 best solutions
from the 𝜖-cleared solution set.

4 RESULTS
This study focuses on computationally expensive functions, which
shall be imitated by considering a very limited evaluation budget
for test problems. This is a commonly used principle in surrogate-
assisted research, especially for more general approaches that need
to be tested on several optimization problems. In this study, we have
limited the function evaluations to 200-300 and considered prob-
lems with up to 10 variables. For comparison, we use well-known
test problems, such as Sphere, Ackley, Rosenbrock, and others from
the single-objective BBOB test suite [11]. To demonstrate the gen-
eralizability of PSA, we (i) conduct an experiment focusing on the
most suitable hyper-parameter combination, (ii) investigate the
impact of dynamically determining the surrogate-bias by 𝜌 and
(iii), lastly, compare the proposed family of surrogate-assisted algo-
rithms with other recently proposed methods for computationally
expensive problems.

4.1 What are suitable values for 𝛼 , 𝛽 and 𝜌?
In our first experiment, 𝜌 is kept fixed and not updated. This shall
give insights if 𝜌 is a problem-dependent variable and, in fact, ben-
efits from being updated based on the surrogate’s prediction error.
Moreover, the impact of 𝛼 and 𝛽 on an algorithm’s performance is
of interest.

For this hyper-parameter study, we chose CMA-ES [12] as a base-
line algorithm. We normalize each variable between zero and one
to avoid any scaling irregularities and initialized the algorithm with
a standard deviation of 𝜎 = 0.15. The algorithm’s initial starting
point is determined by the best solution found by generating 20
points using Latin Hypercube Sampling [20]. We employ grid-based
optimization by setting the hyper-parameters 𝛼 ∈ (1, 2, 3, 5, 10),
𝛽 ∈ (0, 5, 10, 20, 30, 40, 50) and 𝜌 ∈ (0.1, 0.2, . . . , 0.9, 1.0) for PSA-
CMA-ES . Because 𝛽 = 0 makes the value of 𝜌 irrelevant, there is
not need to consider any run with 𝜌 = 0 in addition. Because of
the stochastic nature of the algorithm, we execute each parameter
combination 11 times. This resulted in 60,588 runs in total for all
test problems. As a performance criterion, we address the so-called
anytime performance 𝑓 (any) of the algorithm and calculate the in-
tegral of the convergence curve based on the gap to the optimum
𝑓 (gap) = 𝑓 − 𝑓 (opt) . Measuring the convergence and not only the
final function value addresses the desire of a surrogate-assisted
algorithm converging as quickly as possible with a very limited
function evaluation budget.

In Figure 4 results of the hyper-parameter experiment for three
exemplary optimization problems are shown in the form of a Par-
allel Coordinate Plot [26] are shown. The first three vertical lines
represent the parameters 𝛼 , 𝛽 and 𝜌 , and the last the performance
metric 𝑓 (any) , relative to the baseline algorithm CMA-ES. Thus,
the baseline algorithm’s performance (blue) always ends up being
1.0, and the resulting values indicate the proportional improve-
ment/deterioration. Moreover, the best performing parameter com-
bination (red) and the second to tenth best (yellow) are highlighted.
(i) One can observe that adding surrogate-bias has successfully
improved the performance of the baseline algorithm. For almost all
parameter combinations, the PSA variant achieved values less than
one and improved the baseline algorithm’s performance. Moreover,
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Figure 4: Hyper-parameter Analysis for PSA-CMA-ESwith varying 𝛼 , 𝛽 and 𝜌 . Shown are the baseline algorithmCMA-ES (blue),
the 2nd to 10th best (orange) and the best (red). The performance 𝑓 (any) is normalized with respect to the baseline algorithm.

for the most suitable hyper-parameter values, PSA showed a re-
markable improvement by reducing the convergence integral to
30%.
(ii) One might think that already introducing a strong bias in the
𝛽-phase makes the 𝛼-phase irrelevant. However, results indicate
that it is beneficial for PSA to have pre-filtering. The fundamental
difference between these two phases is that 𝛼 is applied no matter
how good the surrogate performs but only gives some light influ-
ence in the form of a tournament. Nevertheless, more experiments
need to be conducted to determine a clear winner for a value of 𝛼
across all problems.
(iii) It becomes evident that for sphere and for rosenbrock rather
large values of 𝛽 and 𝜌 and thus a stronger surrogate-bias are
a better choice. In contrast to bbob-f07-1 where less surrogate
involvement has turned out to be more effective. Moreover, even for
a relatively simple 10-dimensional quadratic function, the surrogate
shall not be used 100% (𝜌 = 1.0) of the time. Analysis has shown
this can be attributed to the limited number of points initially. Even
for problems with almost no complexity, a small initial number
of design of experiments (here 20) requires the baseline algorithm
to do some exploration until the surrogate starts to recognize the
characteristics of the function and has a suitable accuracy.
(iv) Besides visualization, we have also performed a ranking based
analysis to find suitable parameter combinations. Thus, we have
averaged the ranking in percentage across all problems. For instance,
rank 30 out of 307 results in a value of ≈ 0.0977. The average per-
centage ranks with their standard deviations are shown in Table 1.
Results indicate that an 𝛼 value between 5 to 10, a 𝛽 value between
30 to 50 and a value of 𝜌 between 0.3 to 0.5 perform best.

Table 1: Rankings of best performing hyper-parameters.

𝛼 𝛽 𝜌 rank in % std of rank in %

10 40 0.4 0.2485 0.1556
5 40 0.5 0.2485 0.1949
10 50 0.3 0.2586 0.1664
10 30 0.3 0.2595 0.1914
5 40 0.3 0.2606 0.1728

4.2 Is it beneficial to update 𝜌 each iteration?
Our next study addresses the impact of updating 𝜌 each iteration.
The relatively small 𝜌 values found to perform best might indicate
that trusting the surrogate too much slows down the overall con-
vergence. Thus, the effect of updating 𝜌 in each iteration based on
the surrogate’s prediction error shall be investigated (Algorithm 1
and Section 3.3). Considering the insights gained from the hyper-
parameter study, we define an upper bound for 𝜌 determining
the maximum influence of the 𝛽-phase to a reasonable value of
𝜌 (max) = 0.7. Moreover, we have used good performing parame-
ter combinations from the previous hyper-parameter study. The
experiment reveals that an update of 𝜌 performs significantly bet-
ter than the best parameter combination from before and is, thus,
recommended (see Table 2).

Table 2: Ranking with adaptive 𝜌 .

𝛼 𝛽 𝜌 rank in % std of rank in %

10 40 adaptive 0.1375 0.1831
10 40 0.4 0.2485 0.1556

4.3 How does PSA perform compared to other
surrogate-based algorithms?

For the remainder of this study, we fix the hyper-parameters to a
𝛼 = 10, 𝛽 = 40 and perform a dynamic update of 𝜌 with 𝜌 (max) = 0.7.
So far, our experiments have been based on CMA-ES to avoid an
immense amount of runs for drawing conclusions about suitable
hyper-parameters. However, for a comparison with other methods
we have applied PSA to the following well-known population-based
algorithms besides CMA-ES [12]: Differential Evolution (DE) [24],
Particle Swarm Optimization [16] with adaptive 𝑐1 and 𝑐2 [27] and
a standard genetic algorithm [9]. For all algorithms, the population
size and number of infills solutions (or, depending on the algorithm,
called particles or offsprings) has been set to 10. The algorithm
implementations available in the optimization framework pymoo [5]
have been used.

First, we like to confirm that PSA improves the convergence
of the considered baseline algorithms on various test problems.



0 100 200 300

10−12
10−9
10−6
10−3

sphere-5d

ga
psa-ga

de
psa-de

pso
psa-pso

cmaes
psa-cmaes

ego
lqcmaes

e-shotgun

0 50 100 150 200 250 300

10−13
10−11
10−9
10−7
10−5
10−3
10−1

sphere-10d

0 50 100 150 200 250 300

101

ackley-10d

0 50 100 150 200 250 300

102

2×101

3×101
4×101

6×101

rastrigin-10d

25 50 75 100 125 150

10−11

10−8

10−5

10−2

101
himmelblau

50 100 150 200

10−12

10−9

10−6

10−3

100

rosenbrock-2d

50 100 150 200

10−6

10−4

10−2

100

102
bbob-f01-1-10d

50 100 150 200

104

105

106

bbob-f02-1-10d

50 100 150 200

102

6×101

2×102

3×102
bbob-f03-1-10d

50 100 150 200

102

2×102

3×102
4×102

bbob-f04-1-10d

50 100 150 200

10−10
10−8
10−6
10−4
10−2
100
102

bbob-f05-1-10d

50 100 150 200

102

103

104

105

bbob-f06-1-10d

50 100 150 200

101

102

bbob-f07-1-10d

Figure 5: A convergence-based comparison of PSA with their baseline methods and other surrogate-based algorithms.

Figure 5 shows the convergence plots (averaged over 11 runs) of
a variety of single-objective optimization problems. The PSA vari-
ants are plotted with straight and the baseline algorithms with
dashed lines. The convergence curves demonstrate the superiority
of surrogate-assisted approaches across all test problems except
for bbob-f04-1-10d. We attribute the superiority of PSO to the
problem complexity and the fact that no algorithm can convergence
with the limited evaluation budget of 300.

Second, the performance compared to other surrogate-based
algorithms shall be demonstrated. As a comparison we have cho-
sen a standard EGO implementation from GPyOpt [1] (with 10
infill points in each iteration), a recently proposed method called 𝜖-
shotgun [7] (with a batch size of 10 and 𝜖 = 0.1), and lqCMAES [10].
First, one can observe that lqCMA-ES, based on a quadratic model
approximation, converges closer to the optimum if a solution near
the optimum is found. Nevertheless, for problems where this is not
the case, PSA variants show superior performance. Extending PSA



to perform a local search using a quadratic model might show simi-
lar convergence behavior near an optimum. Moreover, EGO and
𝜖-shotgun are outperformed by almost all PSA variants except for
bbob-f05-1-10d where a solution close to the optimum is found
right away. Comparing algorithms of the PSA family with itself,
does allow to declare no clear winner. Whereas PSA-PSO seems
to perform well for most problems, PSA-CMA-ES converges faster
for the problems with only two variables. Altogether, considering
an algorithm with a gap to the optimum of less than 10−6 as con-
verged, at least one PSA variant was better 50% (6/12) and equally
good 30% (4/12) of the time. This can be considered as a remarkable
achievement for a generalizable concept.

5 CONCLUSIONS
In this paper, we have proposed a family of probabilistic surrogate-
assisted algorithms. The idea is based on improving the convergence
of an existing algorithm by incorporating a surrogate’s knowl-
edge. The concept consists of a surrogate’s influence through a
tournament-based procedure with 𝛼 competitors and a stronger
surrogate’s bias by using solutions with probability 𝜌 derived from
continuing the optimizing for 𝛽 iterations on the surrogate. Experi-
ments have shown that this effectively improves the convergence
behavior on a variety of problems. A study on the surrogate-bias
probability 𝜌 has indicated that smaller or larger values are more
suitable depending on the problem complexity. Thus, we have pro-
posed an adaptive procedure of updating 𝜌 depending on the surro-
gate’s prediction error inspired by the well-known 𝑅2 metric. PSA
variants of CMA-ES, DE, GA, and PSO have shown competitive per-
formance compared to other surrogate-based algorithms. Applying
PSA to other variable types to further demonstrate the approach’s
capabilities shall be part of future work. Moreover, the effect of a
local search to improve the convergence behavior near the opti-
mum is worth investigating. Other interesting future studies for
PSA are extensions to handle constraints and multiple objectives.
This will require a suitable baseline algorithm and a modification
of 𝜌 estimation based on more than one surrogate. Altogether, the
proposed probabilistic surrogate-assisted concept shall pave the
way for new algorithms. PSA allows making use of existing al-
gorithms’ benefits to solve computationally expensive problems
efficiently using a surrogate. Thus, this shall be an alternative to
the widely-used fit-and-optimize method used in EGO and other
algorithms.
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