
Dynamic Vessel-to-Vessel Routing Using Level-wise
Evolutionary Optimization

Yash Vesikar, Julian Blank,
Kalyanmoy Deb

Michigan State University
East Lansing, Michigan

{vesikary,blankjul,kdeb}@msu.edu

Markku Kalio
Aalto University
Espoo, Finland

markku.kallio@aalto.fi

Alaleh Maskooki
Univrsity of Turku
Turku, Finland

alaleh.a.maskooki@utu.fi

ABSTRACT
Modern practical optimization problems are too often complex, non-
linear, large-dimensional, and sometimes dynamic making gradient-
based and convex optimization methods too inefficient. Moreover,
most such problems which must be solved for a reasonably ap-
proximate solution routinely in every few hours or every day must
use a computationally fast algorithm. In this paper, we present a
formulation of a dynamic vessel-to-vessel service ship scheduling
problem. In a span of several hours, the service ship must visit as
many moving vessels as possible and complete the trip in as small
a travel time as possible. Thus, the problem is bi-objective in nature
and involves a time-dependent traveling salesman problem. We
develop a level-wise customized evolutionary algorithm to find
multiple trade-off solutions in a generative manner. Compared to a
mixed-integer programming (MIP) algorithm, we demonstrate that
our customized evolutionary algorithm achieves similar quality
schedules in a fraction of the time required by the MIP solver. We
are currently developing an interactive decision support tool based
on our proposed method for finding multiple trade-off schedules
simultaneously and selecting a single preferred one.
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1 INTRODUCTION
A starting point to tackle real-world optimization tasks is to sim-
plify them as tractable optimization problems, so that a standard
provable algorithm can be applied. However, the obtained solutions
to the simplified problems may not represent the true properties
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of the optimal solution to the original problem. There is a need to
keep the original complexity of the problem and devise computa-
tionally tractable and customized algorithms which can produce
near-optimal solutions quickly. In this paper, we investigate the
dynamic vessel-to-vessel routing problem (DV2VRP), where a route
for a service ship, starting from and ending at a harbor, is to be
found byminimizing the traveling time andmaximizing the number
of ships visited. DV2RP can be viewed as a dynamic and bi-objective
TSP problem in which location of nodes change with time and also a
subset of nodes is allowed in a tour, making the problem extremely
challenging to solve. We propose a level-wise genetic algorithm
(LW-GA) with customized mutation and crossover operators to find
near-optimal solutions for DV2VRP. The time dependent dynamics
are addressed by forming multiple levels of optimization, where
the route-level problem searches for a tour and the schedule-level
problem searches for a time schedule of visiting vessels dictated at
the route-level.
1.1 Problem Formulation
DV2VRP is a bi-objective optimization problem where a service
ship needs to visit the largest number of vessels in the shortest
possible time. The service ship starts at a harbor 𝐻 and needs to
return back to harbor after visiting a number of vessels within
a pre-specified time window 𝑇𝑤 . The two objectives of the task
are: (i) maximize the number of vessels visited (𝛼) by the service
ship, and (ii) minimize the traveling time 𝑑 (< 𝑇𝑤 ). The problem
defines 𝑁 vessels in total, where 𝑘-th vessel 𝒗 (𝑘) are at different
locations at different time slots. The notation 𝑣

(𝑘)
𝑗

denotes 𝑘-th
vessel location at the 𝑗-th time step (see Figure 1a). Note that the
locations are based on each vessel’s route which can be assumed to
be pre-determined and that 𝑣 (𝑘)𝑡 is only available exactly at time
𝑡 , not before or after. In total, there exist
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possible

routes. The figure shows a two-vessel (𝛼 = 2) route in a three-vessel
(𝑁 = 3) problem: Harbor to Vessel-2 to Vessel-3 and back to Harbor.
Also, for a given route involving 𝛼 vessels, a schedule involving
time slot for visiting each vessel in a chronological manner as
dictated by the route will finally dictate the overall travel time.
Note that many of the routes will not be feasible, as some vessels
may have sailed out of reach at the time slot of consideration and
many schedules are not practically feasible due to time continuity
violations. To determine the feasibility, we denote available time
slots of 𝑘-th vessel as Ω(𝑣 (𝑘) ). For the example, the availability
of vessel 𝒗 (1) in the figure is given by Ω(𝒗 (1) ) = (10, . . . , 13). The
specific schedule marked in the figure indicates that the service
ship starts from harbor at zero-th time slot, reaches Vessel 2 at 41-st
time slot, then goes to Vessel 3 at 44-th time slot, and finally returns
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(a) Illustration of a DV2VRP with the route 𝑅 =

(𝐻, 2, 3, 𝐻 ) and the schedule 𝑆 = (0, 41, 44, 50) .
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(b) Visual walkthrough of the optimization proce-
dure in the upper level.
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(c) Discovered Pareto-Optimal solutions for
different time horizons𝑇𝑤 .

to harbor at 50-th time slot – all are within their Ω-vectors. Thus,
a solution to DV2VRP with 𝛼 vessels consists of two entities: (i)
a route 𝑅 = (𝐻, 𝑃1, . . . , 𝑃𝛼 , 𝐻 ), in which 𝑃𝑖 denotes the identity of
𝑖-th vessel in the route, and (ii) a schedule 𝑆 = (0, 𝑡𝑃1 , . . . , 𝑡𝑃𝛼 , 𝑡𝐻 ),
in which 𝑡𝑃𝑖 denotes the time slot for vessel 𝑃𝑖 . The traveling time
between 𝑖-th vessel at 𝑝-th time slot and 𝑗-th vessel at 𝑞-th time slot
is denoted by 𝑐 (𝑣 (𝑖)𝑝 , 𝑣

( 𝑗)
𝑞 ). Then, the total travel time for a 𝛼-vessel

route 𝑅 with a schedule 𝑆 is given as

𝑑 (𝑅, 𝑆) =
𝛼∑

𝑘=0
𝑐

(
𝑣
(𝑅𝑘 )
𝑆𝑘

, 𝑣
(𝑅𝑘+1)
𝑆𝑘+1

)
. (1)

The harbor 𝑣 (𝐻 ) is available at any time. By representing a solution
as (𝑅, 𝑆), a formulation of DV2VRP is given below:

min
(𝑅,𝑆)

(−𝛼 (𝑅, 𝑆), 𝑑 (𝑅, 𝑆)) ,

subject to (i) 𝑑 (𝑅, 𝑆) ≤ 𝑇𝑤 ,

(ii) 𝑆𝑘 ∈ Ω(𝑣 (𝑅𝑘 ) ), 𝑘 = 1, . . . , 𝛼,

(iii) 𝑆𝑘 + 𝑐
(
𝑣
(𝑅𝑘 )
𝑆𝑘

, 𝑣
(𝑅𝑘+1)
𝑆𝑘+1

)
≤ 𝑆𝑘+1, 𝑘 = 1, . . . , 𝛼 .

(2)

The constraints ensure that (i) the service ship returns to the harbor
before the time horizon limit exceeds, (ii) the schedule contains only
valid time slots where a vessel is available and (iii) each transition
between vessels (or harbor and vessel) is feasible and does not
violate the time constraint.

2 METHODOLOGY
We propose LW-GA a multi-level algorithm to optimize DV2VRP.
The first level reduces the bi-objective problem to a single-objective
problem by using by fixing 𝛼 . The second level problem searches for
a route 𝑅 given 𝛼 and the third level problem develops a schedule
that minimizes the traveling time 𝑑 (𝑅, 𝑆), given a route 𝑅 of size 𝛼 .

𝛼-level Problem
The overall procedure starts with 𝛼 = 1 (first sub-problem) and
continues with increasing 𝛼 , until no feasible solution can be found
(see Figure 1b). After having found solution(s) that minimize the
travel time 𝑑 (𝛼) given 𝛼 , a transition function 𝜆𝛼→𝛼+1 transfers
the obtained solutions to the next sub-problem 𝛼 + 1 by increasing
the length of each route 𝑅 and schedule 𝑆 by one. We have used
a heuristic based optimization for 𝜆𝛼→𝛼+1 to ensure a fast but
effective transition.

Route-level Problem for a Given 𝛼

The route-level optimization problem is responsible for finding a
vessel route 𝑅 = (𝐻, 𝑃1, . . . , 𝑃𝛼 , 𝐻 ) using exactly 𝛼 ships for the
schedule-level optimization to evaluate. A route always starts from

the harbor and ends at the harbor visiting each vessel at most
once. Such a schedule provides information about feasibility and
minimum travel time 𝑑∗ (𝑅) for a route which is used as the con-
straint and objective value at the route-level respectively. We use a
genetic algorithm with customized heuristic-based crossover and
mutation operators which ensure the offspring being feasible. En-
suring feasibility is crucial because each function evaluation re-
quires choosing the exact time schedule 𝑆 of visiting each vessel
which is solved at the schedule-level. In our experiments we have
investigated a DV2VRP with 𝑁 = 63 vessels where a permutation-
based customized GA converged in an average run in less than 100
generations with a population size of 20.

Schedule-Level Problem for a Given Route of size 𝛼
At the lowest level, a route 𝑅 containing 𝛼 vessels is supplied, and a
schedule 𝑆 that minimizes the traveling time (Equation 1) needs to
be found. We have implemented a dynamic programming approach
which considers each transition in a route 𝑅 from vessel 𝒗 (𝑅𝑘 ) to
𝒗 (𝑅𝑘+1) . Let us denote the minimum traveling time from the harbor
to vessel 𝒗 (𝑅𝑘 )𝑡 by 𝑑∗ (𝒗 (𝑅𝑘 )𝑡 ). Then, the minimum traveling time to
𝒗 (𝑅𝑘+1)𝑡 is given by:

𝑑∗ (𝒗 (𝑅𝑘+1)𝑡 ) = min
𝑞∈Ω (𝒗 (𝑅𝑘 ) )

𝑑∗ (𝒗 (𝑅𝑘 )𝑞 ) + 𝑐 (𝒗 (𝑅𝑘 )𝑞 , 𝒗 (𝑅𝑘+1)𝑡 ). (3)

Initially, 𝑑∗ (𝒗 (𝐻 )
𝑡 ) = 0 since the service ship does not leave

the harbor yet. Then using this sub-optimality criterion for each
transition, the minimum path length is calculated.

3 RESULTS AND DISCUSSIONS
Figure 1c shows the discovered Pareto-optimal solutions using the
proposed LW-GA for various time horizons 𝑇𝑤 on problem based
on the real-world data obtained from a shipping company. We
have made use of the multi-objective evolutionary optimization
framework pymoo [1] and developed customized evolutionary op-
erators for the problem. Results from the initial studies of LW-GA
are promising and are comparable with the known Pareto-optimal
values presented in the original work [2]. A standard mixed-integer
programming solver requires 60 hours of computational time to
solve the𝑇𝑤 = 10 hour problem. In contrast, our approach requires
only 2.44 minutes to solve the same problem. More results will be
communicated in a later publication.
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