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Modern practical optimization problems are too often complex, nonlin- The upper level uses a genetic algorithm with random mating selection, a
ear, large-dimensional, and sometimes dynamic making gradient-based single-point crossover, and a customized mutation operator, to generate
and convex optimization methods too inefficient. In this paper, we optimal routes of length «.

resent a formulation of a dynamic vessel-to-vessel service ship schedul-
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ing problem. In a span of several hours, the service ship must visit

: : .. Parent 2:| O, 15, o, 12, Parent 2:| O, 15, 4. 63,
as many moving vessels as possible and complete the trip in as small
a travel time as pOSSi3|e. ThUS, the pr0b|em IS bi—ObjECtive In nature Figure 3: Example single-point crossover with two parents
and involves a time-dependent traveling salesman problem. We develop | . ~ |
_ _ _ _ _ _ Mutation - Modified Transition function

d |€V€|-W|S€ CUStomlzed eVO|Ut|Onary algorlthm tO flnd mU|t|p|e trade_ k:n’ no newships are inserted’ theexisting sequence is mutated

off solutlo.ns in a generatl.ve manner. Compared to a mlxed—mtéger o 2 e 2 > [o 2 s 2
programming (MIP) algorithm, we demonstrate that our customized

evolutionary algorithm achieves similar quality schedules in a fraction of Figure 4: Example mutation of a route

the time required by the MIP solver.

The crossover is a single-point crossover on a randomly selected point
within the first parent’s sequence, such that the lengths of both resulting
sequences remain « after the process.

The mutation operator employs a variant of the transition operator from
the a-level with the condition that k = n. This ensures that the length of
the sequences remains the same.
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A service ship must leave from the harbor and simultaneously:
» Maximize the number of different target ships visited ()
» Minimizing the total distance traveled (d)

and finally return to the harbor within a predefined time window T,,.
Our approach is composed of three levels: Lower Level

1. a-level: Defining the subproblem and sequence length (o
5 P ’ gth (@) The lower level is a dynamic programming solver that accepts a sequence

2. Upper level: Custom GA for optimizing routes given « . . .
PP P - 5 as input, and returns a schedule and distance calculation for that route as

3. Lower level: Optimizing schedules given a route by using dynamic
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Designing routes for a given « gets increasingly more complex as the 0 s & 0
number of ships through the working area increases. In our data-set o
there were 63 distinct ships passing through the working area. o 2 o,
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) First step in dlstance evaluation (b) Second step in distance evaluation
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The following equation describes the optimal schedule for a given route
based on the sub-optimality criteria specifying that the minimum feasible
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F ko e m o o ) - distance between two adjacent ships in a sequence is the optimal transition
o . Rk " . .
(a) Sample Work Area Distribution with 63 ships (b) Example route sketch between them. Where vf, ) denotes the position of ship R, in the sequence

at time g, and d™ represents the minimum total distance.

d*(V§R+1)) —  min [d*( )) 4 C( (Rk) §Rk+1))]
“ qgﬂ(V(Rk))

Each a-level is a bi-level subproblem with sequences of length .. The
upper level responsible for designing optimal routes and a lower level
designing optimal schedules. To advance to the next a-level we define

Results

a transition function to increase «. Pareto Optimal Solutions and Example pareto solution
k=2
Sequence 0, 32, 63, 4, 0 n=1 Sequence 0, 32, 30, 63, 4, 0 3 . %
Schedule |0, 15, 35, 50, 72 ‘ Schedule |0, 15, 25, 35, 50, 72 s
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Parameters: (a) Pareto Optimal solutions for various values of T (b) Example Solution with 32 ships

k := new permutation size
n := number of ships to replace

Figure 2: Transition function
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The transition function selects a window of size n from an existing

schedule, denoting which ships should be replaced. Then it generates a
permutation of size k from target ships available within the associated
time window. In the example above n =1 and k = 2, thus we replace
the subsequence [32] with a new subsequence [32,30] resulting in «
increasing from 3 to 4.
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