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Abstract

Sustainable forest management is a crucial element in
combating climate change, plastic pollution, and other
unsolved challenges of the 21st century. Forests not only
produce wood – a renewable resource that is increasingly
replacing fossil-based materials – but also preserve bio-
diversity and store massive amounts of carbon. Thus, a
truly optimal forest policy has to balance profit-oriented
logging with ecological and societal interests, and should
thus be solved as a multi-objective optimization problem.
Economic forest research, however, has largely focused on
profit maximization. Recent publications still scalarize
the problem a priori by assigning weights to objectives.
In this paper, we formulate a multi-objective forest man-
agement problem where profit, carbon storage, and biodi-
versity are maximized. We obtain Pareto-e�cient forest
management strategies by utilizing three state-of-the-art
Multi-Objective Evolutionary Algorithms (MOEAs), and
by incorporating domain-specific knowledge through cus-
tomized evolutionary operators. An analysis of Pareto-
e�cient strategies and their harvesting schedules in the
design space clearly shows the benefits of the proposed
approach. Unlike many EMO application studies, we
demonstrate how a systematic post-optimality trade-o↵
analysis can be applied to choose a single preferred solu-
tion. Our pioneering work on sustainable forest man-
agement explores an entirely new application area for
MOEAs with great societal impact.

Keywords: Economic forest research, optimal for-
est management, multi-objective optimization, NSGA-II,
NSGA-III, MOEA/D

1 Introduction

The optimal management of forest resources has been de-
bated for centuries. Early forestry regulations were de-
signed to curb short-sighted selective logging (”harvest
the best, leave the rest”) and to guarantee a regular flow
of timber [34]. But times have changed: climate change,
plastic pollution, and biodiversity loss demand a multi-
dimensional approach that can balance profit-oriented
logging with ecological and societal interests. After all,
forests represent multi-use resources that are highly valu-
able beyond their raw materials, e.g. for carbon stor-
age, species and habitat diversity, and recreational pur-
poses. Forest-related policies are thus not made by a
single person with a single utility function, but involve
multiple stakeholders with diverse objectives. The case
of Finland, Europe’s most forested country, exemplifies
this conundrum: vast forests remove approx. 45% of Fin-
land’s annual CO2 emissions and are thus paramount for
reaching the government’s ambitious goal to balance car-
bon sink and emissions by 2035; however, any reduction
in timber harvesting - while lowering carbon emissions
- would require painful economical and societal conces-
sions as the Finnish forest industry accounts for 21% of
the country’s export revenues, and directly and indirectly
employs 15% of the Finnish workforce. When negotiating
such conflicting interests (here carbon storage vs. profit),
people’s preferences are not inherently fixed but may be
softly defined and thus negotiable to a certain degree. Op-
posing policy makers may achieve compromises easier if
the trade-o↵ between conflicting interests could be quan-
tified and visualized. For example, even a politician who
puts economic growth above all else may be willing to sac-
rifice a little money if a disproportionately huge positive
e↵ect on biodiversity could be shown.
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Economic forest research, however, has largely taken
the perspective of forest owners. Finding optimal strate-
gies thus corresponds to maximizing the forest’s Net
Present Value (NPV). Recent publications admittedly
stress the importance of additional non-profit objectives,
but scalarize the problem a priori by assigning weights
to each objective [32]. In contrast, our approach allows
us to assign the preferences for di↵erent objectives a pos-

teriori by uncovering the Pareto-e�cient frontier. More-
over, the authors in [32] report a run time of 50-120 hours
for finding a single optimal forest management strategy.
Uncovering the Pareto-e�cient frontier - the set of po-
tentially thousands of strategies that represent di↵erent
yet optimal trade-o↵s - becomes computationally unfea-
sible with existing methods. Although multi-objective
optimization has shown to solve such high-dimensional
problems quickly and e�ciently, it has not been applied
in the forest management domain yet.
In this paper, we therefore assume the perspective of

a policy maker and propose the use of Evolutionary Al-
gorithms (EA) for finding a set of Pareto-optimal forest
policies that may help to mitigate conflicting interests
between stakeholders. Our approach di↵ers from existing
work in that it i) allows us to consider multiple di↵erent
objectives simultaneously, and ii) provides the ability to
express preferences a posteriori. Our work contributes a
tool that:

• uncovers the Pareto-e�cient frontier in a fraction of
the time that it takes existing solutions to find a
single strategy,

• aids in negotiating conflicting interest by visualizing
the trade-o↵s between objectives, and

• prescribes the optimal harvesting schedule corre-
sponding to each point on the non-dominated front
to forest managers.

The rest of this paper is organized as follows. Sec-
tion 2 discusses relevant research on the optimization of
harvesting strategies under di↵erent forest management
styles. Next, Sections 3, 4, and 5 present our problem
formulation, methodology and findings. Finally, we pro-
vide conclusions and future directions in Section 6.

2 Related work and contributions

Before we present our EA approach for multi-objective
forest strategy optimization, we provide some background
on related forest economic research.

2.1 Earlier Research on Forest Manage-
ment

In the Nordic countries two types of forest management
strategies are currently in use: rotation forestry (RF) and

(a) Rotation forestry (RF)

(b) Continuous cover forestry
(CCF)

Figure 1: Illustration of tree stand development under
di↵erent forest management regimes.

continuous cover forestry (CCF).1

Rotation forestry (Figure 1a) has been the dominat-
ing strategy across Fennoscandia since the 50’s and fol-
lows a clear and repetitive cycle of artificial regenera-
tion, growing, thinning, and final clear-cut harvesting
that only leaves a few live retention trees. Economic mod-
els for RF build on various extensions of Faustmann’s
work from 1849 [14] that optimizes the interval length
between clearcuts to maximize the timber yield. This
single-objective setup leaves little room for environmen-
tal concerns. Numerous studies have shown the adverse
ecological e↵ects of clear-cut harvesting that irreversibly
destroys natural forest characteristics, ruins habitat di-
versity, and removes trees as an inexpensive form of car-
bon storage.

Continuous cover forestry (Figure 1b) o↵ers a more
sustainable alternative that uses selection cutting (thin-
nings) to harvest individual trees of di↵erent sizes and
species uniformly from the stand. Harvesting occurs more
frequently but less intense which helps to preserve natural
forest characteristics. Trees and soil store carbon more ef-
ficiently under CCF, so that this strategy even contributes
towards combating climate change [1, 16]. However, eco-
nomic models for CCF become more complex as they need
to optimize not only the timing of partial harvesting (bi-
nary variable; similar to the clearcut intervals in RF), but
also the number of trees harvested per size class and per
species (continuous variable).2

1RF and CFF are often also referred to as even- and uneven aged
forestry respectively due to the even/uneven tree age structure that
these harvesting regimes produce.

2Species in the boreal forest typically include spruce, birch, pine,
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In light of CCF’s ecological advantages, it is unsur-
prising that the Nordics and the UK have recently seen
a growing public interest in switching from ecologically
harmful clear-cut harvesting to sustainable selection cut-
ting [2]. The common misconception, shared by private
forest owners and experts alike, that CCF would result
in lower timber production [33] has been debunked by
numerous studies that found RF and CCF fully competi-
tive; see e.g. [20, 19, 21, 15, 22]. CCF becomes especially
favorable when considering the economic value of forests
beyond pure timber production, e.g. for recreational pur-
poses, carbon storage, and biodiversity [32].

2.2 Finding Optimal Forestry Strategies

Finding optimal forest management strategies presents a
dynamic discrete-time control problem. Complications
arise from discontinuities, nonconvexities, a large num-
ber of decision variables, and the mixed-integer nature
of the optimization problem (harvest timing variables are
boolean; harvest amounts are continuous). Current state-
of-the-art models can simultaneously cover RF and CCF
regimes. In [32], Tahvonen et al. extend earlier results
of [31] and apply bilevel optimization [7]: while keeping
the harvest timings fixed, the lower-level uses gradient-
based interior-point algorithms in AMPL/Knitro [4] to
optimize the number of trees harvested per size class and
species. The maximized objective value of the lower-level
problem is then passed to a genetic algorithm [12, 30] in
the upper-level to optimize the harvest timing vector.
This approach is well suited for single-objective stud-

ies that compare the economic performance of RF and
CCF. However, it is unsuited for optimizing multiple ob-
jectives simultaneously due to the inherent limitations of
the AMPL/Knitro optimizer that only supports single ob-
jective function. In their study on profitability and bio-
diversity, Tahvonen et al.[32] scalarize the problem by a
priori assigning prices to di↵erent objectives, resulting in
a weighted sum that can be solved via single-objective
optimization. Similarly, the authors in [1] use the same
bilevel approach as in [32] and assign a fixed carbon price
before optimizing the total economic value. The method
in [32] is computationally ine�cient as the Knitro opti-
mizer on the lower-level is called numerous times. The
authors report 50-120 hours for a full iteration using an
Intel (R) Xeon (R) E5-2643 v3 @3.40GHZ, 24 logical pro-
cessing computer. In contrast, MOEAs can solve the op-
timization problem significantly faster and the speed does
not vary much from single- to multi-objective cases.

3 Problem Formulation

Before optimizing forestry strategies with MOEAs we for-
mulate the problem in an ecologically sound, yet math-
ematically tractable way. We utilize a size-structured

and other broad-leaf trees.

forest growth model by Pukkala et al. [27] which has
been estimated from empirical Finnish forest data. The
model is widely used in economic forest research (see e.g.
[32, 31, 1]), and includes functions for ingrowth, natu-
ral mortality, and diameter increment in mixed-species
stands. Given the scope and limitation of this paper, we
focus on the functions that are essential for the underly-
ing problem formulation. We refrain from describing all
functions, e.g. for ingrowth �, stand growth ↵, and nat-
ural mortality µ in detail. Their exact formulation lays
within the domain of forestry research and is thus besides
the point of this work on MOEAs. For more informa-
tion we kindly refer the reader to Appendix A (based on
[27, 26, 1]) that contains detailed formulas and the numer-
ical parameter values that were used in our experiments.

We discretize time into intervals of � years and de-
note these time steps by t = t0, t0 + 1, ..., T . We de-
note the number of trees in size class s at beginning
of period t by xst, s = 1, 2, ..., n, t = t0, t0 + 1, ..., T ,
where n is the number of size classes. For any point
in time t, the forest stand structure can thus be given
as xt = (x1t, x2t, ..., xnt). The fraction of trees that
grow to the next size class s + 1 during each period t
is given by 0  ↵s(xt)  1, s = 1, ..., n � 1, while the
fraction of trees that die during each period t is denoted
by 0  µs(xt)  1, s = 1, ..., n. Hence, the fraction of
trees that remain in the same size class during period t
equals 1�↵s(xt)�µs(xt) � 0. Natural regeneration (i.e.
trees entering the smallest size class) is given by the in-
growth function �, with stand state xt as its argument.
We let hst denote the number of trees in size class s that
are harvested at the end of each time period t, and let
ht = (h1t, h2t, ..., hnt). The stand development can there-
fore be given as

x1,t+1 = �(xt) + [1� ↵1(xt)� µ1(xt)]x1t � h1t, (1)

xs+1,t+1 = ↵s(xt)xst + [1� ↵s+1(xt)� µs+1(xt)]xs+1,t

� hs+1,t, (2)

where s = 1, ..., n � 1, t = t0, ..., T , and xt0 is a given
initial state at t0 after a clear-cut and subsequent artificial
regeneration. For the definitions of �, µ, and ↵ please see
Appendix A. The harvested amounts also have to satisfy

0  ht  xt. (3)

3.0.1 Economic Value

Harvesting revenues for thinning and clearcut are given
by R(ht) and R(xT ), and harvesting costs by Cth(ht) and
Ccc(xT ), respectively. The cost from artificial regenera-
tion (i.e. NPV of costs of all operations on the stand after
clearcut but before t0) is denoted by w � 0. All revenues
and costs are given in eha�1. The discrete time discount
factor is b� = 1/(1+ r)�, where r is the interest rate and
� is the length of the period. Because of fixed harvest-
ing costs, harvesting may not be optimal in every period.
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Thus, we define binary variables �t that indicate whether
we harvest at a certain time step as

�t =

(
0, if hst = 0 for all s,

1, otherwise.

The fixed harvesting cost are thus given by �tCf . When
�t = 1 a fixed harvesting cost (in e/ha) occurs and the
harvesting intensity hst � 0, s = 1, ..., n can be freely
optimized. When �t = 0 both fixed harvesting cost and
harvesting amount are zero. The profit obtained from
cutting the amount ht at time t is

Pth(ht) = R(ht)� Cth(ht)� �tCf ,

and the profit from a clearcut is

Pcc(xt) = R(xt)� Ccc(xt)� �tCf .

The formulas for computing Cth and Ccc are given in Ap-
pendix A. The net present value of the harvesting strategy
is given by

f1(h, xt0 , T ) =

�w +
T�1P
t=t0

Pth(ht)b�(t+1) + Pcc(xT )b�(T+1)

1� b�(T+1)
,

(4)
where the length of the rotation period is T 2 [t0,1). In
addition, the non-negativity conditions xst � 0, hst � 0
must hold for all t = t0, ..., T and s = 1, ..., n. Note that
the fixed cost term �tCf imposes severe discontinuity in
the NPV objective function, which makes the optimiza-
tion di�cult to solve with e.g. nonlinear programming
and warrants the use of EAs.
The objective function in (4) resembles the classic RF

model. However, the choice of rotation period between fi-
nite or infinite length is equivalent to the choice between
RF and CCF management regimes. The latter is possi-
ble by including natural regeneration and thinning in the
model. In our work, we approximate the infinite horizon
by choosing a su�ciently long rotation period so that any
actions beyond become negligible due to discounting.

3.0.2 Carbon Storage

For modeling the carbon storage, we build on [1], but
deviate from the therein presented approach in that we do
not consider the economic value of CO2, but the absolute
amount of CO2 in tons. This allows for a more general
optimization problem where individual utility functions
and nonlinear relationships between money and carbon
can be used. The amount of net carbon sequestration (or
net negative emissions) in period t can be given as follows:

Qt = ✓{ eBt+1(xt+1)� eBt(xt) +D1(ht) +D2(ht) +Dd(xt)}
(5)

for t = t0, ..., T , where eBt+1(xt+1) � eBt(xt) refers to net
growth, i.e. the change in biomass between time steps.
The additional terms D2(ht) and D1(ht) are needed to
take into account that harvested trees are respectively
used for sawlog and pulpwood products, which release
their carbon content as they decay. Correspondingly,
Dd(xt) refers to dead tree matter (from natural mortal-
ity and harvest residue) and its decay. Formulas for these
functions are found in Appendix A based on [1]. Hence,
the discounted amount of net negative CO2 emissions is
given by the following objective function:

f2(h, xt0 , T ) =

TP
t=0

Q(xt, ht)b�(t+1)

1� b�(T+1)
. (6)

3.0.3 Biodiversity

A forest stand with trees of di↵erent size classes is consid-
ered more diverse than an even-aged forest. We therefore
model biodiversity (per ha) with the Simpson index [29]:

d(xt) = 1�

nP
s=1

xst(xst � 1)

nP
s=1

xst

✓
nP

s=1
xst � 1

◆ , d(xt) 2 [0, 1]. (7)

The value of the Simpson index is high when the stand
carrying capacity is evenly allocated across a great num-
ber of species. Note that we set d(xt) to zero if there are
less than ten trees in a forest stand. The discounted value
of biodiversity leads to the following objective function:

f3(h, xt0 , T ) =

TP
t=0

d(xt)b�(t+1)

1� b�(T+1)
. (8)

A similar expression for the biodiversity objective is used
in [32].

3.0.4 Optimization Problem

The objective functions for NPV, carbon storage, and
biodiversity form the overall optimization problem that
is solved to find the Pareto-e�cient frontier of optimal
trade-o↵s. Specifically:

max
hst

s=1,...,n
t=t0,...,T

[f1(h, xt0 , T ), f2(h, xt0 , T ), f3(h, xt0 , T )] , (9)

subject to (1), (2), and (3), which formally constitutes a
constrained multi-objective optimization problem that we
plan to handle using MOEAs. The number of variables
is 11x the number of time steps we are optimizing for, i.e
a 300 year schedule requires 660 decision variables. We
next describe the related genetic operators.
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4 Methodology

Forest management involves many stakeholders with of-
ten conflicting interests. It thus becomes interesting to
discover the set of strategies that represents di↵erent yet
optimal trade-o↵s. In contrast to earlier research, this
study considers economic, environmental, and societal
goals simultaneously. In this section, we explore three
di↵erent MOEAs and define customized evolutionary op-
erators that incorporate domain-specific knowledge.

4.1 Multi-Objective Evolutionary Algo-
rithms

The algorithm at the core of our work must search over
RN to infer the set of Pareto-optimal forest management
strategies that balance economic performance (NPV),
carbon storage, and biodiversity. Multi-Objective Evolu-
tionary Algorithms have proven to undertake this search
e�ciently in many application domains [6]. In this work,
we consider three di↵erent MOEAs:

• Non-dominated Genetic Algorithm II (NSGA-II
[11]), which retains potentially good solutions along
the search process based on their front rank and
crowding distance.

• Non-dominating Genetic Algorithm III (NSGA-III
[10]), which substitutes the crowding distance cri-
terion in NSGA-II with a clustering operator aided
by a set of distributed set of reference points.

• Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D [35]), which decomposes
the multi-objective problem into a number of single-
objective sub-problems, all solved simultaneously by
considering neighborhood information of the pro-
duced solution.

Each of these three algorithms will be applied to solve
the same optimization problem to uncover the Pareto-
e�cient frontier of optimal forestry policies. For all three
algorithms, we use the pymoo implementations from [3].

4.2 Customized Operators

We define customized variables bhst such that bhst =
hst/xst, which is the fraction of trees harvested at time
step t in size class s. It is convenient to express the vari-
ables in relative amounts as constraint (3) can then be

expressed as 0  bhst  1 for all s, t. Any solution that sat-
isfies this is feasible. We denote the harvesting amounts
at time step t by ht = (h1t, h2t, . . . , hSt), where S is the
number of size classes.
To create a random initial solution, we choose bht such

that for each t, we have bht = 0 with probability p0; other-
wise, each component of bht is drawn independently from
the uniform distribution. The parents for recombination

are chosen using the binary tournament selection opera-
tor. We customize two di↵erent crossover operators and
one mutation operator to create an o↵spring population.
For the first crossover operator, we randomly choose two
parents (h(1), h(2)), each a matrix of integers, to create
two o↵spring solutions (c(1), c(2)). With crossover prob-
ability px, we draw a crossover point tx uniformly from
t0, . . . , T and create the o↵spring, as presented below:

⇣
c(1)t , c(2)t

⌘
=

8
<

:

⇣
h(1)
t , h(2)

t

⌘
, if t < tx,⇣

h(2)
t , h(1)

t

⌘
, if t � tx.

This is similar to 1-point binary crossover, but instead of
swapping the tails of binary strings, we swap the bottoms
of matrices. The numerical values are not changed in the
first crossover, they are just swapped between solutions.

The second crossover operator does, however, a↵ect the
numeric values in the solution matrices. As before, we de-
note the parents by (h(1), h(2)). The o↵spring (c(1), c(2))
is formed as outlined in Algorithm 1. If both of the par-
ent solutions have non-zero harvesting amounts at a cer-
tain time step, then the corresponding o↵spring vectors
are formed using Simulated Binary Crossover (SBX) [9]
between the parent vectors; otherwise, the o↵spring is

created by randomly picking h(1)
t or h(2)

t with 50% prob-
ability. This ensures a high number of time steps without
any harvesting activities, as fixed costs usually render too
frequent harvesting sub-optimal.

Algorithm 1 The second crossover operator. The spread
parameter ⌘c for SBX has the value 2.0.

for t 2 {1, . . . , T} do

if h(1)
t , h(2)

t > 0 then

form vectors c(1)t , c(2)t by component-wise SBX
else

c(i)t  
(
h(1)
t with probability 1

2

h(2)
t with probability 1

2

for i = 1, 2

end if

end for

The customized mutation operator creates one o↵-
spring solution from one parent solution according to Al-
gorithm 2. The distribution D in the algorithm is used
to create random harvesting strategies for a single time
step. Drawing from the distribution D is done by uni-
formly choosing a point ht 2 {2, . . . , 7} and setting

cst =

(
0, if s < ht,

1, otherwise.
.

With a certain probability we replace all zero vectors with
random non-zero vectors and vice versa. Otherwise we
apply component-wise polynomial mutation [8] to a non-
zero vector; a zero vector is left untouched.

In the recombination phase of the MOEA, one half of
the o↵spring is generated using the first crossover opera-
tor, the other half via the second crossover operator. The
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Algorithm 2 Mutation operator. Let h be the parent
and c be the child. The spread parameter ⌘c for polyno-
mial mutations is 20.0 and probability 1/11. The param-
eter pmut has the value 0.05.

for t 2 {1, . . . , T} do

draw r from Unif[0,1]
if r < pmut then

if ht > 0 then

ct  0
else

draw ct from the distribution D
end if

else

if ht > 0 then

ct  component-wise polynomial mutation
of pt

else

ct  0
end if

end if

end for

algorithm is terminated after a fixed number of genera-
tions has elapsed.

5 Results

Our results section consists of four di↵erent, albeit re-
lated parts. First, we compare the performance of three
MOEAs: NSGA-II, NSGA-III, and MOEA/D. As the
true reference front (i.e. a Pareto-optimal strategy) is
unknown, we use the hypervolume indicator [37] as a
guidance criterion for comparing solutions from di↵erent
MOEAs [17, 36], and for choosing the best performing al-
gorithm for further experiments. Second, we use the best-
performing MOEA for finding the entire set of Pareto-
optimal solutions. We visualize the Pareto front, and dis-
cuss its shape and implications for the trade-o↵s between
the three objectives. Thirdly, we analyze the dominant
strategies to unveil salient knowledge about what solution
properties makes a solution optimal. This process of ”in-
novization”, a by-product of performing multi-objective
optimization, is an important process of knowledge dis-
covery [13] in real-world problems. We choose individual
solutions from di↵erent parts of the Pareto front and make
qualitative observations regarding the corresponding har-
vesting schedules. Finally, we demonstrate the use of a
trade-o↵ analysis – rarely performed in EMO application
studies – to choose a single preferred solution from the
obtained MOEA solutions.

5.1 Comparison of MOEAs

In the following we compare the performance of three
well-known MOEAs: NSGA-II, NSGA-III and MOEA/D.

We have run each algorithm 20 times from di↵erent initial
populations on the multi-objective forest management
problem. The optimization was run for 60 time steps (cor-
responding to a 300-year horizon). For each algorithm,
the population size was set to 1, 000 and and the number
of generations to 500 which results in a total 500,000 func-
tion evaluations. The evaluation of each solution through
the simulation models described in Equations 1 and 2 is
fast and allowed us to consider such a large number of
solution evaluations. The MOEA/D-specific parameters
size of neighborhood and probability of mating were 200
and 0.5, respectively. These parameters are set according
to suggestions provided in their original studies.

Figure 2a shows the statistics of the resulting hyper-
volume metrics across all algorithms and runs in a box-
plot. In this comparison, clearly, NSGA-III shows the
most robust performance, with the highest hypervolume
value and the lowest variance. NSGA-II and MOEA/D
perform worse and are not able to obtain good perfor-
mance on average. In addition to evaluating the good-
ness of the obtained set of non-dominated solutions, the
convergence over time and therefore the performance at
each generation are analyzed next. Figure 2b shows the
performance of the median run for each algorithm. Inter-
estingly, NSGA-II and MOEA/D show a slightly better
performance than NSGA-III in the beginning. However,
from generation 50 (after about 50,000 solution evalua-
tions), NSGA-III clearly outperforms the others. With
higher solution evaluations, NSGA-III’s performance be-
comes relatively better.

The superiority of NSGA-III can be attributed to
its guidance of the search through reference directions
in combination with the hyperplane-based normalization
concept. NSGA-II’s crowding distance approach is known
to perform not very well for more than two objectives
and MOEA/D’s normalization considers only the ideal
but not the nadir point in the objective space. Our ex-
periment indicates that both – the usage of reference di-
rections and a suitable normalization – is of importance
to obtain a diverse set of non-dominated solutions for the
proposed forest management problem.

5.2 Non-dominated Set of Solutions

Next, we present the non-dominated solutions obtained
by the best performing algorithm for the forest man-
agement problem – NSGA-III – for further investiga-
tions. Moreover, we address the underlying randomness
of MOEAs by merging solutions from 10 independent runs
together to demonstrate the solution properties of mul-
tiple runs. We run each optimization for each horizon
lengths between 15 to 60, with 5 step intervals. We con-
sider the 60-step solution (300 years) to be equivalent to
a continuous-cover solution due to the strong discounting
e↵ect. The objective vectors (or points) of the result-
ing non-dominated set of solutions is shown in Figure 3.
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Figure 2: Comparison of NSGA-II, NSGA-III or MOEA/D using hypervolume metric.

It is interesting to note that NSGA-III is able to han-
dle objective values of di↵erent orders of magnitude to
find representative solution with a good diversity. The
non-dominated set of solutions mostly consist of strate-
gies with long time horizons (green dots), suggesting that
continuous-cover forestry is optimal as soon as a balance
between profit, carbon storage, and biodiversity is pre-
ferred. Only an extreme focus on profit-maximization
leads to RF strategies with short rotation periods (blue
crosses), but naturally results in poor values for biodi-
versity. The Pareto front visualizes how sacrificing profit
ever so slightly leads to a paradigm shift from RF to CCF.
These results concur with earlier studies (see e.g. [32])
that found CCF to be the preferred strategy when addi-
tional non-profit objectives are considered.

Table 1: The objective values for five chosen solutions

Soln.
Econ. value
(e/ha)

C-Storage
(ton/ha)

Biodiversity

A 3240 44.4 2.21
B 189 84.2 2.62
C 1939 67.8 2.53
D 3216 46.6 2.48
E 1792 59.1 2.60

Minimum -713 30.8 2.21
Maximum 3252 85.8 2.72

5.3 Analysis of Harvesting Schedules

Individual preferences for the three objectives will clearly
a↵ect the choice of a single preferred harvesting schedules,
but before any such post-optimality analysis is performed,
solutions from di↵erent parts of the obtained front must
be well understood.
Strategies A and D both emphasize economic value and

lead to similar values for carbon storage. The two strate-

 A

 B

 C
 D

 (

Figure 3: The NSGA-III front with all non-dominated
forest management strategies. Clear-cut RF strategies
are marked as blue crosses, CCF as green dots. Economic
value (e/ha), carbon storage (ton/ha), and biodiversity
are denoted as f1, f2, and f3, respectively.

gies di↵er, however, significantly in their values for bio-
diversity. The detailed harvesting schedules in Figure 4
reveal that A and D both perform frequent thinning. So-
lution A, however, is a RF strategy with fairly short ro-
tation length and clear-cuts at the end of each harvesting
schedule. Solution D still leads to a high profit, but uses
continuous cover forestry. The comparison between A and
D demonstrates how clear-cutting and short rotation peri-
ods considerably reduce a forest’s biodiversity, while only
adding a disproportionately small gain in profit. This ob-
servation may help policy makers to justify a paradigm
shift away from ecologically harmful clear-cut harvesting
and towards sustainable CCF forestry.

7



Solution A (RF)

f1 = 3240 f2 = 44.4 f3 = 2.21

f1

f2

f3

0 5 10
time step

11

1

si
ze

 c
la

ss

Solution B (CCF)

f1 = 189 f2 = 84.2 f3 = 2.62

f1

f2

f3

0 5 10 15 20 25
time step

11

1

si
ze

 c
la

ss

Solution C (RF)

f1 = 1939 f2 = 67.8 f3 = 2.53

f1

f2

f3

0 5 10 15 20
time step

11

1

si
ze

 c
la

ss

Solution D (CCF)

f1 = 3216 f2 = 46.6 f3 = 2.48

f1

f2

f3

0 5 10 15 20 25
time step

11

1

si
ze

 c
la

ss

Solution E (CCF)

f1 = 1792 f2 = 59.1 f3 = 2.60

f1

f2

f3

0 5 10 15 20 25
time step

11

1

si
ze

 c
la

ss

Figure 4: Illustration of the five exemplary chosen solutions. The objective space is visualized by petal diagrams
and the design space by the respective harvesting schedules. Strategies shorter than 30 time steps (A, C) indicate
a finite horizon length corresponding to RF. For strategies longer than 150 years, approximating continuous cover
forestry (B, D, E), only the first 30 time steps are shown.

In stark contrast, solution B provides high values for
both carbon storage and biodiversity. Only one harvest
occurs during the first 150 years. Leaving the forest un-
touched allows the accumulation of dead wood that binds
massive amounts of CO2, but leads - quite understand-
ably - to a low economic output.

Solution C provides a trade-o↵ between carbon storage
and economic value. Less emphasis was put on biodi-
versity, which lead to a RF strategy using clear-cutting.
However, compared to the pure profit-maximizing strat-
egy A, the profit-carbon trade-o↵ in C leads to the harvest
of bigger trees, and less frequent thinning and clear-cuts.
The harvesting schedule corresponding to strategy C may
provide an acceptable compromise to the case of Finland,
given in Section 1, where policy makers have to find a
profit-carbon trade-o↵ that balances economic concerns
with ambitious emission goals.

Finally, solution E represents a balanced trade-o↵ be-
tween profit, carbon storage, and biodiversity. This is
similar to C, but also considers biodiversity an important
dimension. This leads to a shift from RF to CCF, less
frequent thinning and a focus on bigger trees.

5.4 Sytematic Selection of a Preferred
Solution

Clearly, the obtained non-dominated set does not have
a uniformly distributed set of points in the entire front.
While in most part, the variation of objective vectors is
smooth and small, in certain other parts, they change
abruptly. But importantly, every non-dominated point
makes a trade-o↵ among the three objectives and thus
is a viable candidate for final adoption. Thus, the next
important step in an applied multi-objective optimization
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task is the issue of choosing a single preferred solution
from a large number of obtained non-dominated solutions.
Any such decision-making must involve all objectives

and real decision-makers with certain preference informa-
tion. We emphasize here that choosing a preferred single
solution from 3,280 solutions shown in Figure 3 is not an
easy task. More studies on applied MOEA should provide
systematic procedures for achieving the decision-making
task. Here, we provide one particular procedure that we
adopted for this study.
First, we attempt to choose a few (say, K) solutions

from the entire non-dominated set. Ideally, a clustering
strategy can be employed to pick well-distributed K so-
lutions from the obtained MOEA set. Preference infor-
mation for biasing certain objectives can also be applied
here in consultation with forest department decision-
makers and stake-holders, but here we simply choose
five (K = 5) well-distributed solutions manually, as in-
dicated by red squares in Figure 3. Table 1 presents
the respective objective vectors and also indicates the
minimum and maximum objective values of the entire
obtained non-dominated set, indicating the respective
nadir and ideal objective vectors, respectively. Other
multi-criterion decision-making (MCDM) methods such
as Pareto-race [18], NIMBUS [23], surrogate-worth anal-
ysis [5], self-organizing maps [25], and others [24] can be
used here to pick K solutions.
Second, we analyze the chosen K preferred solutions to

understand their trade-o↵, which can be defined in di↵er-
ent ways. Here, we define the trade-o↵ of a solution by
first identifying its neighboring chosen points and then
averaging the maximum ratio of the sacrifice to gain in
moving from x to its neighbors. The trade-o↵s in the ob-
jective space and the corresponding harvesting schedules
of the chosen five solutions are visualized in more detail in
Figure 4. The petal plots of these solutions indicate the
relative change of objectives between any two solutions.
For example, solution A is the neighbor of solution D. A
comparison of the two respective petal plots indicate that
a large sacrifice of objective f3 from D to A occurs for a
tiny gain in objective f1. The whole green f3 is missing in
solution A, whereas a tiny part of blue region is missing
in solution D. Thus, D may be preferred compared to A
from a trade-o↵ analysis, as a relatively large sacrifice for
a small gain will be considered favorable for choosing a
solution. To systematize the trade-o↵ calculation, we tab-
ulate the trade-o↵ value for each of the five solutions (say
i-th one: x(i)) with each of the neighbors (x(j) 2 B(x(i)))
in Table 2 using the following equation [28]:

R(x(i),x(j)) =
Lossf (x(i) ! x

(j))

Gainf (x(i) ! x(j))
. (10)

For example, the trade-o↵ value of solution D with re-
spect to its neighboring solution A is 16.464 – a large
value. The final averaged trade-o↵ value (R̄(x(i)) =P

j2B(x(i)) R(x(i),x(j))/|B(x(i))|) indicates that solution

D is the winner. A detailed look at Figure 3 will reveal
that solution D acts as a ‘knee’ point in the obtained set
of points, which – if it exists – is usually one of the most
preferred solutions in a Pareto-optimal front. It is inter-
esting to see how our systematic trade-o↵ analysis is able
to identify the preferred point.

Ultimately, there is no single correct strategy for choos-
ing a single preferred solution and whatever course of ac-
tions is chosen will depend on personal preferences. How-
ever, by framing forest management as a multi-objective
optimization problem it becomes possible to highlight the
trade-o↵s between objectives, which in turn may help de-
cision makers to find a strategy that best combines dif-
ferent stakeholder interests.

6 Conclusions

In this study, we have explored the use of multi-objective
evolutionary algorithms (MOEAs) for finding sustainable
forest management strategies through a multi-objective
formulation. Specifically, we have analyzed the trade-
o↵s between three di↵erent objectives: economic profit,
carbon storage, and biodiversity. We have visualized the
Pareto-front consisting of a number of non-dominated for-
est policies and have chosen five example solutions for
which we have also discussed their trade-o↵s in the ob-
jective space. Furthermore, we have performed an in-
novization analysis for which we have provided detailed
harvesting schedules of the example solutions in the de-
sign space.

The NPV objective function, formulated here, poses a
particular challenge due to discontinuities that are intro-
duced by a mix of fixed and variable harvesting costs.
Since MOEA have shown to overcome even these chal-
lenging issues, we can use the proposed method also with
alternative objectives. For example, one may argue that
the price for carbon is usually fixed and cannot be freely
optimized. We can swap carbon storage with di↵erent
goals while keeping the methodological framework the
same. For future work, it may be interesting to analyze
and optimize the deadwood mass in forests, which has
been shown to store significant amounts carbon.

Our work represents the first proof-of-concept study
that MOEAs can be very useful for solving the century
old problem of how to optimally manage our precious for-
est resources. Our proposed MOEA approach not only
helps decision-makers in finding an optimal strategy, but
it also prescribes detailed harvesting schedules to forest
managers who can implement the chosen strategy in prac-
tice.
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Table 2: Trade-o↵ for each of the five chosen solutions using their neighbors.

x Neigh.
B(x)

A B C D E Trade-
o↵
R̄(x)

A C,D - - 0.336 0.061 - 0.199
B C,E - - 1.053 - 1.190 1.122
C A,B,D,E2.976 0.950 - 1.486 1.233 1.661
D A,C,E 16.464 - 0.673 - 0.793 5.977

E B,C,D - 0.840 0.811 1.262 - 1.090
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