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Abstract

Many engineering design problems are associated with computation-
ally expensive simulations for design evaluation, which makes the opti-
mization process a time-consuming effort. In such problems, each can-
didate design should be selected carefully, even though it means extra
algorithmic complexity. This study develops a niching-based surrogate-
assisted evolutionary algorithm that aims at handling both single-objective
and multi-objective computationally expensive problems. A trust-region
concept in the optimization context is proposed to control the evaluation
error. At the same time, maximizing the information about specific re-
gions of the search space is pursued by proper selection of new candidate
solutions. The proposed method is evaluated and compared to a recently
developed surrogate-assisted evolutionary algorithm on multi-objective
test problems. Thereafter, a case study involving a multi-objective de-
sign optimization of the cylinder head water jacket of a vehicle engine is
presented and discussed.

Keywords: Multi-objective Optimization, Metamodeling, Real-World
Optimization, Simulation-based Optimization

1 Introduction

Evolutionary algorithms are robust optimization tools that can handle differ-
ent challenges in practical optimization problems such as uncertainty (Sahinidis
2004), multimodality (Goldberg and Richardson 1987), discontinuity (Mongeau
2009), mixed-variable (Cao, Jiang, and Wu 2000), conflicting objectives (Deb
2001) and black-box nature (Jones, Schonlau, and Welch 1998a). These al-
gorithms do not require any simplification of the actual problem towards the
solution process, a matter which is often required by the classical point-based
methods (Bartz-Beielstein et al. 2010). This flexibility usually comes at the cost
of relatively high number of solution evaluations. For example, the evaluation
budget in BBOB2009 (Hansen et al. 2010) test suite was set to 106D, in which
D is the number of variables for the defined problems to solve the problems close
to their global optima. For computationally expensive problems, each solution
evaluation may take a few hours to a few days, and thus, such a large evalu-
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ation budget is impractical. Therefore, even if the evaluation process can be
parallelized, the calculation time is the bottleneck of the optimization process.

In many applications, including optimal mechanical design problems, the
evaluation budget is often limited to a few hundred or less. The goal in such
problems is to make the most out of the available evaluation budget, which
is fulfilling the design objective(s) as much as possible. A limited evaluation
budget clarifies the importance of a careful selection of candidate solutions for
evaluation, which motivates the use of surrogate models, also known as meta-
models or response surfaces. A surrogate model is constructed from a few high-
fidelity solutions. Because a surrogate model usually relies on assumptions on
the actual model, a variety of techniques have been suggested in the context of
optimization: Radial Basis Functions (Zapotecas Mart́ınez and Coello Coello
2013), Support Vector Machine (Zapotecas Mart́ınez and Coello Coello 2010),
Kriging (Zhang et al. 2015) or Moving Least Squares (Filomeno Coelho, Lebon,
and Bouillard 2011).

This study develops a surrogate-assisted evolutionary algorithm for single
and multi-objective optimization problems. This method, called Niching-based
Surrogate-Assisted Evolutionary Algorithm (NSA-EA), selects new candidate
solutions following two goals. First, these solutions should optimize the pre-
dicted objective values, and second, they should maximize the information col-
lected about specific regions of the problem landscape.

This paper is organized as follows: Section 2 provides an overview of the lit-
erature on surrogate-assisted optimization for single and multi-objective prob-
lems. Afterwards, the methodology and implementation details are elaborated
in Section 3. Section 4 studies the effect of each component of NSA-EA nu-
merically. A comparison with a recent surrogate-assisted multi-objective opti-
mization method is performed in Section 5. A practical case on multi-objective
design optimization of the cylinder head water jack of the vehicle engine is stud-
ied in Section 6. Finally, conclusions are made, and future research is discussed
in Section 7.

2 Past Studies

Metamodel-assisted algorithms follow a general scheme which will be described
in the following. First, the initial solutions are sampled uniformly in the search
space, and their actual values are evaluated. The optimal number of initial high-
fidelity solutions depends on the problem complexity (unknown) and the avail-
able budget (known). Second, a metamodel is built using the initial high-fidelity
solutions. In principle, any surrogate model can be used, and a fine-tuning of
metamodel hyper-parameters makes sense. Afterwards, an optimization algo-
rithm searches for non-dominated solutions by using only predictions of the
metamodel model, an internal optimization which is referred to as virtual opti-
mization. Out of these solutions, some are selected for high-fidelity evaluation.
If the termination criteria are not satisfied, the selected points are utilized to
update the metamodel, and the optimization process continues.

A general review of metamodel-based optimization in engineering design
can be found in (Wang and Shan 2007). A study that aims to solve problems
with only 100 and 250 solution evaluations calls for multi-objective problems
was made by Knowles (Knowles, Corne, and Reynolds 2009). The proposed
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algorithm ParEGO (Jones, Schonlau, and Welch 1998b) is used to solve single-
objective problems composed by Tchebycheff function (Steuer and Choo 1983).
The focus of this study is the limited evaluation budget and the evaluation
in noisy optimization problems. Results showed that this method outperforms
NSGAII on DTLZ and some other test problems.

Another surrogate-assisted multi-objective algorithm, Gap Optimized Multi-
objective Optimization using Response Surfaces (GOMORS) (Akhtar and Shoe-
maker 2016), a parallel algorithm for multi-objective optimization, is compared
with the ParEGO results on the ZDT, LZF test and a groundwater remediation
real-world problem with 200 solution evaluations. GOMORS uses either NSGA-
II (Deb et al. 2002) or MOEA/D (Zhang and Li 2007) to find promising points
on the metamodel. GOMORS was found to outperform ParEGO, especially on
higher-dimensional problems.

Recently, Surrogate Optimization of Computationally Expensive Multi-Objective
Problems (SOCEMO) (Mueller 2017) has been proposed, which focuses on solv-
ing large-scale multi-objective problems. The initial population is created by
using Latin Hypercube Sampling and RBF with cubic functions is employed
for the metamodeling. Different strategies to select new solutions for high-
fidelity evaluation were employed to balance exploitation and exploration. The
algorithm was tested on a large set of benchmark problems and two engineering
application problems and showed to be much more efficient than MOGA. Also, a
single-objective surrogate-based algorithm, Mixed-Integer Surrogate Optimiza-
tion (MISO) (Mueller 2016) was proposed to optimize mixed-integer problems
with expensive solution evaluations. The algorithm combines different sampling
strategies and local search to obtain high-accuracy solutions. Also, real-valued
problems can be solved using this algorithm.

Deb et al. (Deb et al. 2017) systematically analyzed how metamodels can be
used for optimization. The proposed taxonomy shows the possibilities for using
metamodels for either objective or constraint functions. Different combinations
of modeling strategies to predict all objective and constraint function values
with one model, create one model for each function and constraint or combine
these two strategies in specific ways. Also, a classification of existing algorithms
into the different categories is performed. Moreover, results for multi-objective
optimization using Kriging as a metamodel are provided in (Hussein and Deb
2016).

3 Proposed Niching-based Surrogate-Assisted Op-
timization

In the following, the concept of surrogate-assisted optimization is explained.
Afterwards, we propose the niching-based surrogate-assisted evolutionary algo-
rithm (NSA-EA) and provide a detailed description of the method.

3.1 Proximity and Trust Region

A well-known concept in optimization is the exploration-exploitation trade-off
(Karimzadehgan and Zhai 2010). The likelihood of missing the global optimum
increases if the search is not explorative enough. On the other hand, when focus-
ing more on exploration, no time might be left to exploit the gained information
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about the design space. Only a reasonable trade-off will produce satisfactory
results. Evolutionary algorithms generally focus on exploration in the beginning
and gradually start to exploit available information. For example, initialization
of the solutions is an entirely explorative process since the objective values of
the previously initialized solutions are not considered.

For metamodel-assisted optimization, each high-fidelity solution provides
some new information on the landscape of the objective function(s). If this
solution is far from all the existing high-fidelity solutions, the new information
on the landscape will be significant. This information can be used to improve
the accuracy of the existing metamodel on-the-fly, resulting in more accurate
predictions in subsequent generations. Consequently, it is possible to improve
exploration by emphasizing the diversity of the newly introduced solutions for
high-fidelity evaluation.

To take the diversity of new solutions into account, we define the concept
of proximity measure. It defines an infeasible spherical region of radius Rprox
around each existing solution so that subsequent solutions are not selected close
to existing ones. A greater Rprox enforces more exploration, which can be
beneficial in the early stages of the optimization.

The reliability of the predicted values strongly depends on the accuracy of
the metamodel. Predictions close to observations are more accurate than pre-
dictions far from them. Therefore, we propose the concept of the trust region to
control the amount of acceptable uncertainty in the search process. The trust
region defines spherical regions of radius Rtrust around each solution. Subse-
quent solutions for high-fidelity evaluation must be selected in the trust region.
If Rtrust is large, points with high predicted fitness are probably those with
high uncertainty. This can mislead the search to regions with high metamodel
uncertainty. The value of Rtrust can control the exploitation of the optimiza-
tion process: a small Rtrust forces the algorithm to select new solutions close to
existing solutions, where the prediction error is small.

Altogether, combining both concepts, a search region is defined where all in-
fill points should be. On one hand, they should be smaller than Rtrust to satisfy
the current amount of allowed uncertainty. On the other hand, they should be
larger than Rprox to improve the diversity of infill solutions. Rtrust ≥ Rprox > 0
should gradually decrease to allow for a gradual transient from explorative to
exploitative search. For simplicity, we set Rtrust ∝ Rprox.

Figure 1 shows different search regions during an optimization run and visu-
alizes the gradual movements from exploration to exploitation. The proximate
region is shown in red and the trust region green. In the initial epoch, ex-
ploration is emphasized by having a very large Rtrust and also a large Rprox
value. In intermediate epochs, both radii have decreased to improve exploita-
tion. During the final epochs, both regions are relatively small to maximize
exploitation.
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Figure 1: Proximal and trust region.

As shown in the figure above, the proximate and trust region shrink over
time. The shrinking is based on the evaluation budget and the number of
already evaluated solutions (excluding the initial sample solutions). Both radii
are decreased using an exponential function. To update the value of Rtrust and
Rprox, first, the reduction rate is calculated as follow:

a =

(
1− maxEvals− neval

maxEvals− ninit

)
, (1)

where maxEvals is the overall solution evaluation budget, neval the number
of solution evaluations so far and ninit the number of points used for the initial
population. At each epoch, Rprox is calculated as follow:

Rprox = max (rinit · aτRεprox), (2)

where rinit is the initial minimum distance between two solutions after initial
sampling and τR is the proximate reduction exponent. εprox > 0 is the lower
bound for a distance between two solutions. Rtrust is then defined proportionally
to Rprox:

Rtrust = γ ·Rprox. (3)

The reduction procedure introduces three new parameters: γ as a proportion
between proximate and trust region, τR as reduction exponent and εprox as a
tolerance value. εprox is the lower bound for Rprox which can not be fallen below
even though the exponential decreasing function would say so. Therefore, it can
also be interpreted as the overall precision of the algorithm. For our experiments
γ = 4 and εprox = 10−6 · ||X(U) − X(L)||2 which is 10−6 times the euclidean
distance of the upper minus the lower bound for each variable. A parameter
study is performed in Section 4.1 to find a good value for τR.

These principles can be embedded into any optimization algorithm by adding
constraints that declares solutions as infeasible when they are in the proximal
or outside of the trust region. Therefore, it is independent of the metamodel
itself and only part of the optimization process.

3.2 Selection Error Probability

The goodness of approximation models is crucial for the performance of surrogate-
assisted algorithms. Inaccurate predictions lead the optimization to search re-
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gions that are, in fact, not as good as expected. Often, several metamodel types
are considered, and the best one out of these needs to be selected. Also, for
metamodels that have control parameters, the best parameter setting should be
chosen to keep the prediction error as small as possible. To do this, a metric to
quantify the goodness of a metamodel should be defined. An intuitive metric
for metamodel goodness is Mean Squared Error (MSE):

emse(x) =
1

n

n∑
i=1

(
f̂(xi)− f(xi)

)2
, (4)

where n is the number of available solutions, f̂(xi) is the prediction and f(xi)
the real value. It sums up the square error for each prediction and averages it.

Note that building a metamodel can have different intentions. It can be used
to get an idea of a function by interpolating between existing points. However,
in the case of optimization, this is not even necessary. It is a sufficient condition
if the metamodel preserves the order of solutions since many algorithms use
a rank-based selection. For multi-objective problems, the metamodel is used
by an optimization algorithm to find non-dominated solutions. Optimization
algorithms make pairwise comparisons to determine if a solution is dominating
another. If the outcome is equivalent to any comparison made on the high-
fidelity function, the metamodel is meant to make no error despite having a
deviation between prediction and exact values.

Figure 2 illustrates an exemplary scenario for solutions comparisons. The
true function values are shown in blue and the predictions in red. The absolute
metamodel error is the integral of the difference between both functions. The op-
timization algorithm aims to minimize f(x) (True) by using f̂(x) (Prediction).
The optimization algorithm will make pairwise comparisons. For instance, if
point x1 and x2 are compared, then f(x1) > f(x2) and f̂(x1) > f̂(x2). The
metamodel does predict the domination relation correctly. Contrarily, when x1
and x3 are compared, f(x1) > f(x3), but f̂(x1) < f̂(x3). The metamodel pre-
diction leads to an incorrect comparison result. Considering minimizing using
this metamodel the algorithm will favor solution x1 over x3 which is indeed
wrong because f(x1) > f(x3).

Figure 2: Selection Error Probability: Pairwise comparison between high-
fidelity and prediction values
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To define a metric for metamodel goodness that takes the discussed criteria
into account, we propose the Selection Error Probability (SEP). It is based on
the concept of ranking under uncertainty investigated in (Hansen et al. 2009).
SEP considers all possible pairwise combinations and sums up the number of
times the prediction is misleading:

esep(x) =
1

0.5 · n · (n− 1)

n∑
i=1

n∑
j=i+1

q(xi, xj), (5)

where

q(xi, xj) =

{
1, if (f(xi)− f(xj)) · (f̂(xi)− f̂(xj))) < 0,

0, otherwise.

The two sums iterate over pairwise comparisons of the existing solutions.
The number of possible pairs with n solutions is 0.5 · n · (n− 1). For each pair
q(xi, xj) returns 1 if the comparison of two solutions using their predictions is
not the same as using their true values. It will return 0 if the comparison is
correct.

3.3 Niching Surrogate-Assisted Evolutionary Algorithm
(NSA-EA)

This section presents Niching Surrogate-Assisted Evolutionary Algorithm (NSA-
EA), which aims at solving single and multi-objective problems when the eval-
uation budget is highly limited. It utilizes the trust and proximity concept
during the optimization and the SEP metric to select the best metamodel. The
pseudo-code of NSA-EA is presented in algorithm 1.

Selection of initial high-fidelity solutions is a crucial phase because the sam-
pling strategy directly affects the goodness of the initial metamodel. Since the
metamodel must be fitted using existing solutions, it is important to cover the
search space as good as possible. A space-filling approach is used in this study in
order to generate initial solutions. A distance variable r is set to the maximum
distance that can exist in the search space r = ‖X(U) − X(L)‖2 between two
points. The initial point is generated randomly. Then, iteratively new points are
sampled and accepted if they maintain a distance of at least r from all existing
points. If n successive attempts are rejected, r is slightly reduced. This process
continues until all initial points are generated. Finally, all sampled points have
at least euclidean distance r to each other. We use this radius for the reduction
later on, and save the resulting minimum distance as rinit after sampling all
initial points.

Afterwards, the proximate and trust region are formed around the sampled
high-fidelity solutions, and the solution evaluation counter neval is updated.
Then as long as neval ≤ maxEvals, a new virtual optimization is performed.
Each metamodel update, virtual optimization, and select of new infill solutions
constitutes an epoch.

At the beginning of each epoch, the best metamodel parameters should be
found for each objective. NSA-EA uses DACE-Kriging (DK) as the metamodel.
We use the DACEFIT module (Nielsen, Lophaven, and Søndergaard 2002) pro-
vided by the Matlab Surrogate Model Optimization Toolbox. The module allows
setting the regression type, correlation function and an initial θ. The regression
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Algorithm 1: Niching Surrogate-Assisted Evolutionary Algorithm
(NSA-EA)

Result: Non-dominated Solutions for a given problem defined by
evaluation function f

Input : MaxEvals (Solution Evaluation Budget), iniFr (Initial
Fraction of Solutions), Nepoch (Points per Epoch), τR
(Reduction Exponent) , γ (Trust Region Ratio) , εprox
(Reduction Tolerance)

Output: Optimized X, F

/* Initialize Parameters and sample initial points */

1 neval ← 0
2 ninit ← MaxEvals · iniFr
3 X, rinit ← sample(ninit)
4 Rprox ← rinit
5 Rtrust ← γ ·Rprox
6 F ← f(X)
7 neval ← neval + ninit

8 while neval ≤ maxEvals do

/* Begin Epoch */

/* Find best model parameter setting for each objective

*/

9 P ← kriging parameter settings()
10 M ← [M0, ...,Mnobj

]
11 for k = 0; k < nobj ; k = k + 1 do
12 emin ← 1.0
13 foreach p ∈ P do
14 mk ← build model(X, Fk)
15 esep ← calc error by crossvalidation(mk, X, Fk)
16 if esep < emin then
17 emin ← esep
18 Mk ← mk

19 end

20 end

21 end

/* Optimize on the surrogate model and select Nepoch
solutions */

22 if single-objective then

23 X̂, F̂ ← optimize and select(M,Rprox, Rtrust, IPOP-CMA-ES,
Nepoch)

24 else

25 X̂, F̂ ← optimize and select(M,Rprox, Rtrust, NSGAIII, Nepoch)

26 X ← X ∪ X̂
27 F ← F ∪ f(X̂)
28 neval ← neval +Nepoch

/* Update the proximity and trust region */

29 Rprox = max (rinit · (1− maxEvals−neval

maxEvals−ninit
)τR , εprox)

30 Rtrust = γ ·Rprox

/* End Epoch */

31 end
32 return non dominated(X, F )
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can either be constant, linear or quadratic. For the correlation, an exponential,
generalized exponential, Gaussian, linear, spherical or cubic spline function can
be used. The theta bounds were set to [10−6, 102] for which the candidate values
are set to [10−5, 10−4, . . . , 100].

Whenever a metamodel should be updated, we execute an exhaustive search
over a candidate set of these hyper-parameters. For the first epoch, this candi-
date set includes all possible parameter combinations. At each epoch, a fraction
of worst candidate metamodel settings is discarded such that at the last epoch,
only two parameter settings are tested.

The goodness of a metamodel is evaluated using stratified k-fold cross-
validation, according to which all existing solutions are used as training and
validation sets. Each time one solution is excluded from the training set, and
its value is predicted using the trained metamodel. This process continues un-
til the predicted values of all solutions are calculated. Having the actual and
predicted values of each solution, SEP can easily be calculated using Equation
5. The best-found parameter setting is selected using SEP as a metric. This
setting is then used to train the metamodel using all the available solutions.

After selecting and training the best metamodel, an evolutionary algorithm
is employed to perform virtual optimization. In principle, any algorithm made
for black-box optimization can be used, since no assumption about the function
to optimize can be made. Depending on the number of objectives, we use two
different methods for optimization:

• For single objective problems, we use the Covariance Matrix Adaptation
Evolution Strategy (IPOP-CMA-ES) with restarts (Auger and Hansen
2005), a successful method for continuous single-objective optimization.
Since new solutions undergo high-fidelity evaluation at the end of each
epoch, IPOP-CMA-ES is executed multiple times consecutively, gener-
ating one new point each time. This new solution does not affect the
metamodel, but it changes the optimization problem landscape since each
new point modifies the feasible region defined by Rprox and Rtrust. At
the same time, Rprox and Rtrust are updated whenever a new solution is
generated.

• For multi-objective problems, we use the recent unified version of Non-
Dominated Sorting Genetic Algorithm III (NSGA-III) (Seada and Deb
2015). The solutions obtained by optimization are candidate solutions,
from which solutions are selected for high-fidelity evaluation. As a con-
straint, each solution must be in Rtrust, but not be in Rprox. The selection
procedure is similar to NSGA-III but uses a clearing strategy. Existing
points are assigned to reference lines. The solution assigned to the least
crowded reference line is selected for high-fidelity evaluation, and all points
within proximity region of this solution are cleared. If another point must
be selected but all points have been cleared, we rerun NSGA-III after
applying the effect of recent solution on the feasible region. For practi-
cal problems, the user might manually select new points from candidate
solutions.
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4 Descriptive Experiments

We design and perform a few descriptive experiments to demonstrate the ef-
fect of different components of NSA-EA. For this purpose, we select three test
problems:

• Rastrigin function, a highly multimodal function with a symmetric bowl-
shaped global structure. The local minimum gradually gets better when
approaching the global minima.

f(x) =

D∑
i=1

(
x2i − 10 cos(2πxi)

)
, −5 ≤ xi ≤ 5.

• Schwefel function, a multimodal function in which local minima lie close
to the corners of search space. Approaching any corner means going away
from the rest of good local minima.

f(x) = 418.9829D −
D∑
i=1

(
xi sin

√
|xi|
)
, −500 ≤ xi ≤ 500.

• ZDT3 function, a two-objective test problem with disjoint Pareto front
for the mathematical definition). The first objective function is unimodal,
while the second objective function is multimodal.

f1(x) = x1,

f2(x) = g(x) h(f1(x), g(x)),

g(x) = 1 +
9

D − 1

D∑
i=2

xi,

h(f1(x), g(x)) = 1−

√
f1(x)

g(x)
−
(
f1(x)

g(x)

)
sin(10πf1(x)),

0 ≤ xi ≤ 1.

For the single-objective test functions, we use the median of the best solu-
tions found in 100 independent runs. For the bi-objective test problem, we use
the median of the median of relative hypervolume (RHV) in 100 independent
runs, which is the ratio of the measured hypervolume defined by non-dominated
solutions divided by the hypervolume defined by the true Pareto-optimal front.
We use the Nadir point (1 0.852) as the reference point for calculation of the
hypervolume. These problems are tested in 5-D space.

4.1 Effect of Rprox

One of the main advantage of NSA-EA over available surrogate-assisted opti-
mization algorithms is the notation of proximity regions when selecting new
infill solutions for high-fidelity evaluation. This allows a gradual shift from
exploration to exploitation, one the principle concepts of population-based op-
timization methods. To show the effect of this factor, we test NSA-EA for
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different values of τR (see Equation 2). A higher τR makes a faster transition
from exploration to exploitation. τR =∞, for example, suddenly reduces Rprox
to εprox, which actually suppress the effect of Rprox concept. The budget of
high-fidelity solutions is set to 20 times the number of variables (20D), and
different values for fraction of initial high-fidelity solutions (iniFr) are tried.
For this experiment, Rprox is set to ∞ to exclude the effect of Rtrust. Figure 3
illustrates the performance metric for each setting. As it can be observed:

• In general, proper reduction rate τR can significantly improve final results.
This is more detectable for Rastrigin and Schwefel functions. τR = 2
results in significantly better final solutions, when compared to τR = ∞
or τR = 0.5

• A gradual reduction of Rprox (for example, τR = 2 ) improves the robust-
ness of the method to the fraction of inital solutions. When τR = ∞,
exploration is limited to the initialization phase. For a small value of
iniFr, this results in a more considerable performance drop compared to
τR = 2, in which exploration diminishes gradually. For the same reason,
a higher iniFr can help by improving the exploration when τR =∞.

• Suppressing the idea of Rprox is advantageous for ZDT3 problem, possibly
because of the simplicity of the objective functions in this problem, or the
fact that in multi-objective problems, diversity of infill solutions in the
objective space can help diversity of solutions in the variable space.

Consequently, a gradual reduction of Rprox, motivated by gradual shift from
exploration to exploitation, can improve both the quality of final solutions and
robustness with respect to fraction of initial solutions.
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Figure 3: Median of the performance measure found over 100 independent runs
for each test problem (maxEvals=100, MaxEpoch=20)

4.2 Effect of Nepoch

A smaller Nepoch is desirable from application point of view since it allows par-
allel evaluation of the new infill solutions; however, it may degrade optimization
performance by postponing exploitation of information on true values of the new
infill solutions. To investigate these factors, we test NSA-EA with different val-
ues for Nepoch and maxEvals. The median of performances is calculated over the
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median of 100 independent run, which is plotted in Figure 4. It demonstrates
that:

• A higher value of Nepoch improves the results for the Rastrigin and the
Schwefel function, but its effect on ZDT function is not spectacular. This
can again be associated with simplicity of the ZDT3 landscape, for which
a gradual refinement of the metamodel is not critical.

• The extra gain for a higher Nepoch > 16 is barely detectable, independent
of the value of maxEvals. Assuming the required time of an evaluation
dominates the metamodel optimization and training time, this trade-off
makes decision-making easier on the value of maxEvals and Nepoch con-
sidering the available computation resources.

• A higher maxEvals results in better solutions, especially for the Rastrigin
and the Schwefel function. For the ZDT3 problem, increasing maxEvals
up to 100 has a dramatic effect, while further improvement is marginal
after that. This can be lack of diversity of the non dominating solutions.
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Figure 4: Median of the performance measure found over 100 independent runs
for each test problem (τR = 2, iniFr = 0.5)

5 Numerical Comparisons

This section compares the performance of NSA-EA with Surrogate Optimization
of Computationally Expensive Multi-Objective (SOCEMO) (Müller 2017), a
recently developed surrogate-assisted evolutionary algorithm for multi-objective
optimization. The code of this method is available online 1, and the default
parameter setting, as suggested by the developer (Müller 2017), was used.

Table 1 presents six multi-objective test problems which are employed in this
study for numerical evaluation and comparison. The family of ZDT and DTLZ
test problems are widely used in the multi-objective optimization literature
(Zitzler, Deb, and Thiele 2000; Deb et al. 2002). We eliminate a few of them
either because of excessive simplicity (ZDT1 and ZDT2) or similarity to other
selected problems. The problem dimension is 10 for all the problems, and the
maximum number of evaluations is set to 100. This setting is based on the types

1https://ccse.lbl.gov/people/julianem/
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of practical problems that motivated this study, in which the problem dimension
is about 10 and the maximum evaluation budget is about 100.

For each problem, 100 independent runs are performed, and Mean Relative
Hypervolume (MRHV) is employed to compare the performance of the methods.
The reference point for calculating the HV is selected as follows:

XREF = α(XNADIR −XIDEAL) +XIDEAL, (6)

in which XREF , XNADIR and XIDEAL are the reference, Nadir and the Ideal point
and α > 1 is a scalar parameter specifying the location of the reference point on
the line connecting the Ideal to the Nadir Point. By default, we select α = 1.01;
however, for some hard problems, this setting may result in MRHV ≈ 0. If so,
our measure may not determine which method has performed better. Alterna-
tively, we try a greater α such that at least one method can reach MRHV ≈ 0.5,
if the default value results in a very small MRHV for both methods.

Table 2 presents the calculated MRHV for both methods. It reveals that:

Table 1: Test problems for empirical evaluation and comparison. For our sim-
ulation, D = 10 and maxEvals= 100.

PID Function No. of Objectives XIDEAL XNADIR

1 ZDT3 2 [0,−0.7748] [0.8518, 1]
2 ZDT4 2 [0, 0] [1, 1]
3 ZDT6 2 [0, 0.28080] [1, 0.9112]
4 M-DTLZ1 3 [0, 0, 0] [0.5, 0.5, 0.5]
5 DTLZ2 3 [0, 0, 0] [1, 1, 1]
6 DTLZ6 3 [0, 0, 0] [1, 1, 1]

Table 2: Relative hypervolume (median of 100 independent runs) for the
SOCEMO and NSA-EA, and the selected value of α (see Equation 6).

PID max-HV α SOCEMO NSA-EA

1 0.8031 1.01 0.1097 0.900
2 3.6615 2 0.0409 0.2364
3 22.8240 1.01 0.5801 0.7477
4 15625 40 0.0485 0.4498
5 0.4472 1.01 0.4204 0.8586
6 5.4060 1.01 0.6270 0.9360

• NSA-EA outperforms SOCEMO for all investigated test problems. This
superiority is more visible for ZDT3, ZDT4, M-DTLZ1 and DTLZ2.

• Except for M-DTLZ1, and to some extent for ZDT4, NSA-EA could sat-
isfactorily approach the true Pareto front. This demonstrates its merit in
practical problems, where we are interested in maximum gain for a very
limited evaluation budget.
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• Although the original DTLZ was modified to reduce its multimodality,
still none of the methods could approach the true Pareto front, and thus
a great value of α was selected to get meaningful MRHV.

• The internal computation time of SOCEMO is much less than NSA-EA,
especially that SOCEMO employs RBF, which is computationally cheap
to train; nevertheless, for the target problems of this project, in which each
design evaluation may take from one hour to a few days, the computation
time of NSA-EA is still negligible.

• NSA-EA has an important practical advantage: It can submit the new
infill designs for external evaluation in a group of desired size. Based on
our evaluation, SOCEMO does not have this flexibility and requires the
evaluation of new infill solutions to proceed. This is a critically important
feature when it comes to practical problems.

6 Case Study: Application to Cylinder Head
Water Jacket Design

In this section, NSA-EA is employed to optimize the design of an engine cylinder
head. In the following, the problem is described, the optimization procedure is
explained, and finally, the obtained results are presented and discussed.

6.1 Problem Description

The problem has eight design parameters, which are the area of four inlets and
four outlets of the cooling water jacket. These parameters are normalized with
respect to the largest possible section. This way each area variable takes a value
within (xi ∈ [0, 100], i = 1, 2, . . . , 8). In the base design, all inlets and outlets
are set to their maximal size, which means xi = 100 for all i = 1, 2, . . . , 8. Two
conflicting objectives were defined – one (f1(x)) is maximized, and the other
(f2(x)) is minimized. Each design evaluation requires a detailed CFD simulation
which takes about one hour using 32 CPUs. The evaluation budget is limited
to 61 designs to complete the optimization task in a reasonable computational
time. Furthermore, two different boundary conditions are considered for CFD
simulation, resulting in two separate problems. They are labelled B34 and B38
here. We solve both problems independently using our proposed approach.
Figure 5 shows a measure related to the temperature distribution of the engine
cylinder head water jacket at a given point of time during a CFD simulation.
The objectives are derived from the flow of water through the jacket. Besides
the variable bounds, there is no other constraint in the problem.
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Figure 5: CFD simulation: Engine cylinder head water jacket.

6.2 Methodology

Two optimization approaches are tested on problems B34 and B38 in parallel
and independently. In the first approach, a commercial software is utilized by
engine design engineers for surrogate model training and optimization. The se-
lection of new infill solutions, however, is performed manually by the engineering
team. This approach is denoted by CS (Commercial Software).

In the second approach, the proposed NSA-EA is employed by the research
team at Michigan State University (MSU) for design optimization. For NSA-
EA, selection of new infill solutions is performed automatically by the algorithm,
except for the final two epochs, in which the engineering team acted as decision-
makers to choose preferred solutions from NSA-EA results. At the end of each
epoch, three to five new solutions obtained by NSA-EA are sent to the engi-
neering team for evaluation.

The CS approach was run independently by the engine design engineers,
while NSA-EA was run at MSU with assistance on solution evaluations and
preference information.

6.3 Results

The research team at MSU interacted with the optimization progress in two
ways:

• At the end of the ninth epoch, they manually reduced the search range
based on lower and upper values of the variables among all non-dominated
solutions, as depicted in Figure 6.

• For the last two epochs, the MSU team was informed by the engine design
engineering team that they are interested in solutions with f2 ≤ 10.0, with
f1 as large as possible. Therefore, for the last two epochs, the MSU team
selected the new infill solutions from the search results manually. The
chosen solutions are marked in Figure 7 for epoch 9 for both B34 and B38
cases. In both cases, a well-distributed set of points within f2 ∈ [9.4, 10]
are chosen. For B34 problem, engineering team was interested in applying
two extra epochs with continued preference information.

Figure 8 shows the predicted values of new infill solutions, as well as their
true values after CFD simulation for both methods (CS and NSA-EA) and
both problems (B34 and B38). All generated solutions by both methods are
illustrated in Figure 9. The region of interest of the engine design engineering
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team is focused in Figure 10, which also demonstrates the final solutions selected
by the engineering team for fabrication and experimental testing.

6.4 Discussion

Based on the obtained results, the following conclusions can be made:

• NSA-EA and CS generate solutions that dominate most initial infill solu-
tions (Figure 9). This can be a considered as a checkpoint for validity of
optimization process even when the evaluation budget is highly limited.

• The selected solutions for fabrication are from NSA-EA results for problem
B34, and from CS results for problem B38 (Figure 10). For both solutions,
f2 is slightly greater than 10, as chosen by the engineering team.

• The prediction error (the difference between a solid line and the high-
fidelity evaluated points) is initially high for both methods and both ob-
jectives. The error remains high for the CS method until the end, but
gradually reduces for the NSA-EA method with more solution evaluations
(Figure 8). This is more detectable for f2, for which the prediction error
becomes almost zero in final epochs when using NSA-EA. This advantage
of NSA-EA is presumably the result of a better exploration of promising
regions in early epochs and a better exploitation in the final epochs, as
well as manual reduction of the search range.

• Compared to the base design, the selected solutions show a maximum of
88% and 114% improvement of f1 for problems B34 and B38, respectively.
This demonstrates impact of algorithmic optimization in comparison with
intuition-based design.

• One interesting and unexpected feature of the selected design for prob-
lem B34 is that one of the outlets is almost removed (x6 being close to
zero in Figure 6). This unexpected observation demonstrates possibility
of using optimization to come up with innovative knowledge about key
features of optimally solving a problem. Such information can be used in
earlier stages of design to determine the number of inlets/outlets or even
their locations. Although simultaneous optimization of different features
is more challenging than optimization of only sizes of inlets/outlets, it is
predictably much more rewarding as well.

• For this problem, considering the soft constraint f2 ≤ 10 from the begin-
ning on could have been advantageous. It would automatically concentrate
the search to the region of interest in the f -space, however such a knowl-
edge about the upper bound on f2 may not have been known a priori and
may have resulted from the non-dominated solutions over epochs.

Although both methods were tested independently, the CS approach was run
by the design engineering team, who had the knowledge of designers’ region of
interest. This significant privilege helps concentration of the search to a small
region, which not only provides more infill solutions for that region but also
improves the accuracy of the metamodel. For the NSA-EA, such information
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was provided and used only for the last two epochs, when the exploration phase
was almost concluded.
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Figure 6: Manual reductions of the search range for problems B34 (left) and
B38 (right) from the 9th Epoch.
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7 Conclusion

In many applications, including optimal engineering design, a solution evalua-
tion requires a costly computer simulation or even experiments, which limits the
number of designs that can be evaluated in an optimization task. This study has
developed a niching-based surrogate-assisted evolutionary algorithm (NSA-EA)
for single and multi-objective optimization of computationally expensive prob-
lems. NSA-EA has introduced the concepts of proximity measure and a trust
region concept for balancing the trade-off between exploration and exploita-
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tion. By gradually shrinking two radius parameters defining proximity and
trust region, the exploration aspect has been relatively reduced to provide more
exploitation of already-found good solutions. Our descriptive experiments have
demonstrated the importance of such a gradual transition. Moreover, NSA-EA
has been evaluated on six test problems and compared with SOCEMO – a recent
surrogate-assisted multi-objective optimization algorithm. Results have demon-
strated the superiority of NSA-EA over SOCEMO. Furthermore, NSA-EA has
been employed to optimize the design of an engine head water jacket. The case
study illuminates the importance of interactive and collaborative optimization
for solving practical problems. For example, user preference can clarify which
part of the Pareto front is more practical. This is crucially important when the
evaluation budget is limited since the scarcity of infill solutions cannot provide
a good estimation of the whole Pareto-optimal front.

This initial study on a practical problem and executed in collaboration with
an industry partner opens up several practical research issues, some of which we
plan to study next. An essential practical feature of collaborative optimization
is the number of infill points which industry can afford to evaluate at a time.
In this study, we provided 3-5 infill solutions after every epoch. In certain
situations, an industry may be interested in evaluating an order of magnitude
more solutions at a time in order to reduce their efforts and time. In such a
situation, we shall be left with fewer epochs to complete the whole optimization
task but will have the privilege of using many infill points to make a better
surrogate model at every epoch. A study exploring the trade-off between the
two aspects should be executed on a case by case basis. The possibility of
evaluating designs in parallel should be exploited in this context. In this study,
the concept of trust region has shown promising results especially on multimodal
single-objective problems; however, an adaptive scheme can be more effective
than a predefined dynamic reduction of the proximity and trust regions. This
can be the subject of future research in the domain of this study. Although
Kriging surrogate modeling approach is used in this study, other approaches,
such as radial basis function, neural networks, etc., can be considered after each
epoch for each objective function modeling.

Multi-objective optimization resorts to a number of trade-off solutions, but
decision-making of solutions in terms of preference information about a prob-
lem is also an equally important task. An optimization using a surrogate
modeling approach must consider both aspects of optimization and decision-
making. Moreover, real-world optimization is collaborative between optimiza-
tion researchers and practitioners. In this paper, we have demonstrated one
viable approach for achieving the collaborative optimization task on a real-
world design problem. More such developmental studies must now be done to
make the whole approach smooth and systematic.
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