
Constrained Bi-objective Surrogate-Assisted
Optimization of Problems with Heterogeneous
Evaluation Times: Expensive Objectives and

Inexpensive Constraints

Julian Blank[0000−0002−2227−6476] and Kalyanmoy Deb[0000−0001−7402−9939]

Computational Optimization and Innovation (COIN) Laboratory
Michigan State University, East Lansing, MI, USA

{blankjul,kdeb}@msu.edu
http://www.coin-lab.org

COIN Report 2020019

Abstract. In the past years, a significant amount of research has been
done in optimizing computationally expensive and time-consuming ob-
jective functions using various surrogate modeling approaches. Constraints
have often been neglected or assumed to be a by-product of the expen-
sive objective computation and thereby being available after executing
the expensive evaluation routines. However, many optimization problems
in practice have separately evaluable computationally inexpensive geo-
metrical or physical constraint functions, while the objectives may still
be time-consuming. This scenario probably makes the simplest case of
handling heterogeneous and multi-scale surrogate modeling in the pres-
ence of constraints. In this paper, we propose a method which makes
use of the inexpensiveness of constraints to ensure all time-consuming
objective evaluations are only executed for feasible solutions. Results on
test and real-world problems indicate that the proposed approach finds
a widely distributed set of near-Pareto-optimal solutions with a small
budget of expensive evaluations.

Keywords: Multi-objective Optimization · Surrogate-assisted Optimiza-
tion · Inexpensive Constraints · NSGA-II · Evolutionary Algorithm

1 Introduction

Optimization of simulation models is essential and especially important in many
interdisciplinary research areas to find optimized solutions for real-world applica-
tions. For instance, many engineering design optimization problems [22] require
a time-consuming simulation to evaluate the design’s performance. A common
technique to deal with long-running simulation is to use so-called surrogate mod-
els or metamodels [1, 23, 18] to represent the original objective and/or constraint
functions. This then allows a computationally cheaper optimization procedure
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to find potentially good solutions without executing expensive evaluations. How-
ever, in real-world problems, a design’s feasibility must be checked during the
optimization process, as an infeasible solution, no matter how good its objective
values are, cannot be accepted. For instance, consider the diffuser inlet design
problem [13, 24], shown in Figure 1a. In [20], the diffuser design is modeled by
two variables, the length (L) and the angle (θ), to maximize the total pressure
ratio and the Mach number at the outlet. The objectives are evaluated using an
expensive mesh generation procedure bounding the diffuser’s height between 0.1
to 0.8 meters. In turn, these bounds limit the minimum and maximum value of θ
for each L. This dependency and some additional constraints result in non-linear
constraints that make the shaded region in Figure 1b feasible. The feasible search
space obeys geometric and physical laws, which are relatively easy to satisfy in
this problem but can not be expressed simply by box constraints on variables.
However, the objective of the problem is to maximize the entropy generation
rate by the diffuser, which must start from solving Navier-Stokes questions in-
volving turbulent flow and solving the equations numerically with an adaptive
step-size procedure. This process is many times more expensive than finding if a
solution is feasible. Thus, a generic surrogate-assisted optimization method that
treats all objective and constraint functions as equally expensive may not be
most efficient for solving such real-world problems.

(a) Geometry [20] (b) Search Space [20]

Fig. 1: Geometric constraints of a diffuser inlet design.

In [25], the optimization of geometrical design parameters in IPM motor
topology has been discussed. Apart from box constraints, the ratio between vari-
ables is bounded. Also, the authors mention that the simulation software allows
running a computationally quick feasibility check to identify overlapping edges,
negative lengths, or non-conventional geometric relations that will inevitably
produce errors after the solver’s start. The availability of such quick feasibility
checks – without running the time-consuming simulation – results in a relatively
computationally inexpensive constraint evaluation. However, to compute the ob-
jective function given by the magnetic flux requires an expensive finite element
methodology, thereby making the IPM motor design task as another case of
heterogeneous surrogate-based optimization.

Even though computationally expensive objective functions have been stud-
ied extensively [18, 9, 26], computationally inexpensive constraints have been
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paid a little attention in the literature. It is also noteworthy that there can
be other combinations of complexities in evaluating them. For instance, the con-
straint may be expensive to evaluate in other real-world problems, while the
objectives may be relatively quick to compute. In this paper, we restrict our-
selves to the heterogeneous problems involving inexpensive constraint evaluation
and expensive objective evaluation procedures and belabor the consideration of
other scenarios in later studies.

In the remainder of this paper, we first present the related work, which con-
siders mostly the more general case of heterogeneous objective function evalua-
tion. In Section 3, we propose our method for handling inexpensive constraint
functions efficiently on an algorithmic level. The performance of the proposed
method is evaluated on a variety of constrained bi-objective test problems in
Section 4. Conclusions and future works are discussed in Section 5.

2 Related Work

In general, optimization problems with computationally expensive objectives
and inexpensive constraints belong to the category of heterogeneously expensive
target functions. The question being addressed is how an algorithm can use
the heterogeneity to improve its convergence properties. Mostly, unconstrained
bi-objective problems have been studied so far, which inevitably results in one
objective being computationally inexpensive (cheap) and one being expensive
or time-consuming. Since only two target values have mostly been considered,
authors also refer to the difference as a delay in the evaluation between two
objective functions, as a problem parameter.

In 2013, Allmendinger et al. [3] proposed three different ways of dealing with
missing objective values caused by such a delay: (i) filling the missing objectives
with random pseudo values within the boundaries of the objective space, (ii)
adding Gaussian noise to a solution randomly drawn from the population, and
(iii) replacing by the nearest neighbor’s objective values in the design space being
evaluated on all objectives. Authors also proposed different evaluation selection
strategies, for instance, based on the creation time of an offspring or a priority
score obtained by partial or full non-dominated rank. This study was one of
the first addressing delayed objective functions and has laid the foundation for
further investigations. In 2015, this study was extended by Allmendinger et al. [2]
by proposing new ways of dealing with the heterogeneity based on using the
cheap objectives to look at one or multiple generations ahead. The experimental
study has revealed that the performance is affected by the amount of delay of
the objectives and, thus, that some approaches are more suitable than others
depending on the amount of delay.

In 2018, Chugh et al. have proposed HK-RVEA [7] as an extension of K-
RVEA [6], which handles objective functions with different latencies. Compared
to the original K-RVEA, significant changes are related to the surrogate’s train-
ing and update mechanism, driven by a single-objective evolutionary algorithm.
A comparison regarding bi-objective test problems with previously proposed ap-
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proaches [2, 3] showed that this surrogate-assisted algorithm works especially
well in cases with low latencies.

Moreover, a trust region-based algorithm that aims to find a single Pareto-
optimal solution with a limited number of function evaluations was proposed by
Thomann et al. [27]. The search direction for each step is given by the vector
between the current best solution and the minimum of the locally fitted quadratic
model. The trust region serves as step size and limits the surrogate’s underlying
error. Results on bi-objective optimization problems indicate the algorithm’s
capability to convergence to a Pareto critical point.

Wang et al. [28] proposed T-SAEA that uses a transfer learning approach
to exploit knowledge gained about the inexpensive objective before evaluating
the more expensive one. A filter-based feature selection finds essential variables
of the computationally inexpensive objective. Then, these features serve as a
carrier for knowledge transfer to the computationally expensive function and
help to improve the metamodel’s accuracy.

In general, most studies related to computationally expensive optimization
problems do not consider constraints or assume them to be expensive as well.
Also, existing literature about heterogeneous expensive target functions focuses
on a delay of objective functions but not constraints. Because computationally
inexpensive constraints are a practical issue that needs to be addressed efficiently,
it shall be the focus of this paper.

3 Proposed Methodology

In the following, we propose IC-SA-NSGA-II, an inexpensive constraint handling
method using a surrogate-assisted version of NSGA-II [10]. First, we describe
three different methods to generate a feasible design of experiments, and, second,
the outline of the algorithm. Our proposed method makes explicit use of the
computationally inexpensive constraint functions and guarantees a solution’s
feasibility before running the time-consuming simulation of objective functions.

3.1 Design of Experiments (DOE) to Build Initial Model

In surrogate-assisted optimization [18], the so-called Design of Experiments (DOE)
needs to be generated to build the initial model(s). The number of initial points
NDOE depends on different factors, such as the number of variables or the com-
plexity of the fitness landscape. A standard method frequently used to generate a
well-spaced set of points is Latin Hypercube Sampling (LHS) [19]. However, with
the availability of an efficient feasibility check, more sophisticated approaches
shall be preferred. Therefore, three different methods returning a well-spaced
set of feasible solutions using inexpensive constraint functions are described.

Rejection Based Sampling (RBS): A relatively simple approach is modifying
LHS, which already provides a well-spaced set of solutions, to consider feasibility.
Such a feasible and well-spaced set of points can be obtained by using LHS to
produce a point set P and rejecting all infeasible solutions to obtain a set of
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feasible solutions P (feas). Because infeasible solutions have been discarded, the
resulting point set does not have the desired number of points (|P (feas)| < NDOE)
and, thus, the process shall be repeated until enough feasible solutions have been
found. If the size of the obtained point set exceeds NDOE, a subset is selected
randomly.

Niching Genetic Algorithm (NGA): The sampling process itself can be
seen as an optimization problem where the objective is given by the constraint
violation f(x) = cv(x), which takes a value zero for a feasible solution x, and
a positive value proportional to the sum of normalized constraint violation of
all constraints if x is infeasible. Such an objective function results in a multi-
modal optimization problem where a diverse solution set with objective values
of zeros shall be found. One type of algorithm used for multi-modal problems
is niching-based genetic algorithms (NGA) where the diversity is ensured by an
ε-clearing based environmental survival [21]. For single-objective optimization
problems, the ε-clearing occurs in the design space and guarantees a distance
(usually Euclidean distance is used) from one solution to another. The survival
always selects the best performing not already selected or cleared solution and
then clears its neighborhood with less than ε distance. Thus, the spread of so-
lutions is accomplished by disfavoring solutions in each other’s vicinity. Having
set the objective to be the constraint violation, a suitable ε has to be found.
The suitability of a given ε depends on the size of the feasible region(s) of the
corresponding optimization problem and is not known beforehand. On the one
hand, if ε is too large, the number of optimal solutions found by the algorithm
will not exceed NDOE. On the other hand, if ε is too small, the solution set’s
spread has room for improvement. For tuning the hyper-parameter ε, we start
with ε = ε0 (a number close to 1.0) and execute NGA. If the size of the obtained
solution set is less than NDOE, we set ε = 0.9 · ε and repeat this procedure until
a solution set of at least of size NDOE is found.

Riesz s-Energy Optimization (Energy): The Riesz s-Energy [16] is a gen-
eralization of potential energy concept and is defined for the point set z as

U(z) =
1

2

|z|∑
i=1

|z|∑
j=1
j 6=i

1∥∥z(i) − z(j)
∥∥s , z ∈ Rn×M . (1)

where the inverse norm to the power s of each pair of points (z(i) and z(j)) is
summed up. It has already been shown in [5] that Riesz s-Energy can be used
to achieve a well-spaced point set by executing a gradient-based algorithm. The
restriction made there that all points have to lie on the unit simplex has been
replaced by the feasibility check provided by the computationally inexpensive
constraint. Thus, a point is only replaced by its successor obtained by the gradi-
ent update if the successor is feasible. The algorithm’s initial point set, which is
necessary to be provided, is first tried to be obtained by RBS, and if a sufficient
number of feasible solutions could not be found by NGA.
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Algorithm 1: IC-SA-NSGA-II: Inexpensive Constrained Surrogate-
Assisted NSGA-II.
Input: Number of Variables n, Expensive Objective Function f(x),

Inexpensive Constraint Function g(x), Maximum Number of Solution
Evaluations SEmax, Number of Design of Experiments N DOE,
Exploration Points N (explr), Exploitation Points N (exploit), Number of
generations for exploitation k, Multiplier of offsprings for exploration s

/* initialize feas. solutions using the inexpensive function g */

1 X← constrained sampling(’energy’, N DOE, g)
2 F← f(X)

3 while |X| < SE max do

/* exploitation using the surrogate */

4 f̂ ← fit surrogate(X,F)

5
(
X(cand),F(cand)

)
← optimize(’nsga2’, f̂ , g,X,F, k)

6
(
X(cand),F(cand)

)
← eliminate duplicates(X,X(cand),F(cand))

7 C ← cluster(’k means’, N (exploit),F(cand))

8 X(exploit) ← ranking selection(X(cand), C, crowding(F(cand)))

/* exploration using mating and least crowded selection */

9 X
′
,F

′
← survival(X,F)

10 X(mat) ← mating(X
′
,F

′
, s ·N (explr))

11 X(explr) ← feas and max distance selection(X(mat),X(cand), X, g)

/* evaluate and merge to the archive */

12 F(explr) ← f(X(explr)); F(exploit) ← f(X(exploit));

13 X← X ∪X(explr) ∪X(exploit)

14 F← F ∪ F(explr) ∪ F(exploit)

15 end

3.2 IC-SA-NSGA-II Algorithm

The outline of IC-SA-NSGA-II is shown in Algorithm 1. The initial design of ex-
periments of size NDOE are obtained by the proposed initialization method based
on Riesz s-Energy and then evaluated by executing the expensive simulation f(x)
(Lines 1 and 2). Afterwards, while the number of solution evaluations SEmax is
not exceeded (Line 3) the algorithm continues to generate N (exploit) solutions
derived from the surrogate for exploitation and N (explr) solutions obtained by
mating and a distance-based selection for exploration. The exploitation starts
with fitting surrogate model(s) which results in the approximation function f̂

(Line 4). Using the surrogates f̂ and the computationally inexpensive function

g the optimization is continued or in other words simulated assuming f = f̂
for k more generations (Line 5). From the last simulated generation, the candi-
dates X(cand) and F(cand) are extracted from the optimum, and duplicates with
respect to F are eliminated (Line 6). This ensures F(cand) to consist of only non-
dominated solutions with respect to F. From X(cand) only N (exploit) solutions
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isting solutions and candidates.

Fig. 2: The two steps in each iteration: exploitation and exploration.

are chosen for expensive evaluation by executing ranking selection [15] in each
cluster where the ranking is based on the crowding distance in F(cand). Figure 2a
illustrates the exploitation procedure of a population with five solutions (circles).
The algorithm found ten candidate solutions (triangles) by optimizing the sur-
rogate and the inexpensive constraint functions. In this example, N (exploit) = 3
and, thus, the K-means algorithm is instantiated to find three clusters. From
each cluster, the solutions obtained by ranking selection based on the crowding
distance are assigned to X(exploit).

Besides the exploitation, some exploration is essential to be incorporated into
a surrogate-assisted algorithm. The exploration is based on the evolutionary re-
combination of NSGA-II with post-filtering based on the distance in the design
space (Line 9 to 11). First, the environmental survival is executed because the
mating should not be based on the archive X but instead on a subset of more

promising solutions X
′
. Second, mating takes place to produce s ·N (explr) solu-

tions X(mat) and, third, the set of feasible solutions from X(mat) being maximally
away from X and X(cand) are assigned to X(explr). Figure 2b demonstrates this
explorative step more in detail. All infeasible solutions generated through mating
have already been eliminated. The solution with the maximum distance to others
is selected, which represents the least crowded solution with respect to X and
X(cand). The exploration step purposefully chooses solutions not suggested by
the surrogate and helps to escape from local optima if necessary. After selecting
the first solution with the maximum distance to others, the solution is marked as
selected and now considered in the distance calculations for the second iteration
in the selection procedure. Finally, the infill solutions X(exploit) and X(explr)

are evaluated on the expensive objective functions f and merged with X and F
(Line 12 to 14).

In our implementation, we set the number of the initial design of experiments
to NDOE = 11n − 1 where n is the number of variables. Moreover, we simulate
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NSGA-II for k = 20 generations with 100 offsprings each generation on the sur-
rogate model. We have used the NSGA-II implementation available in pymoo [4]
for optimization and the Radial Basis Function (RBF) implementation with a
cubic kernel and linear tail available in pySOT [14] for the surrogate model.
In each iteration five new solutions are evaluated using the expensive objective
function, where N (exploit) = 3 and N (explr) = 2. Furthermore, we set the multi-
plier of offsprings during exploration to s = 100. Moreover, it is worth pointing
out that we compare our method with SA-NSGA-II, which does not assume the
constraints are inexpensive but follows overall the same procedure. In contrast to
IC-SA-NSGAII, it uses regular Latin Hypercube Sampling for the initial design
of experiments and fits a surrogate of the constrained function(s) to evaluate
feasibility.

4 Results

The proposed method uses the inexpensiveness of the constraint function(s),
and, thus, the performance on constrained multi-objective optimization problems
shall be evaluated. In this paper, we focus on bi-objective problems with up to
ten constraint functions. In contrast to the constraint function, we treat all
objectives to be computationally expensive.

To evaluate the algorithm’s performance, we use the CTP test problems
suite [12], which has been designed to address constraints of varying difficulty.
Moreover, the performance on other bi-objective constrained optimization prob-
lems frequently used in the literature such as OSY [11], TNK [11], SRN [11],
C2DTLZ2 [17], C3DTLZ4 [17], and Car Side Impact (CAR) [17] shall be eval-
uated. The number of solution evaluations SEmax is kept relatively small to
mimic the evaluation budget of time-consuming simulations. In the following,
first, the performance of methods proposed to generate a feasible solution set
for the design of experiments are visually analyzed, and, second, the algorithm’s
performance on test problems is discussed.

In Figure 3, the results of Rejection Based Sampling (RBS), Niching GA
(NGA), and Riesz s-Energy (Energy) are shown. Compared to RBS and NGA,
Energy obtains a very uniform and well-spaced point set in the inside of the
feasible region across all problems. Also, it is worth noting that points on the
constraint boundary are found, which can be very valuable to start with because,
in practice, optima frequently lie on constraint boundaries. For the purpose of
visualization, the CTP8 problem with two-variables (and nine feasible discon-
nected regions) has been investigated. All methods were able to obtain more
than one feasible solution in all regions.

Table 1 lists the median values (obtained from 11 runs) of the Inverted Gener-
ational Distance (IGD) [8] indicator of 14 constrained bi-objective optimization
problems. The obtained results have been normalized with respect to the ideal
and nadir point of each problem’s True front. The best performing method and
other statistically similar methods (Wilcoxon rank test, p = 0.05) are marked in
bold. Besides IC-SA-NSGA-II, we ran a more steady-state version of NSGA-II
with five offsprings in each generation and an initial population of size 11n− 1
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Fig. 3: Sampling the design of experiments only in the feasible space using
Rejection-Based Sampling (RBS), Niching Genetic Algorithm (NGA) and En-
ergy Method.

sampled by LHS. Moreover, SA-NSGA-II, which is our proposed method with-
out the modifications made to exploit the availability of inexpensive constraints.
Clearly, IC-SA-NSGA-II outperforms the other approaches for most of the prob-
lems. For 11 out of 14 optimization problems, our proposed method shows the
best performance significantly; for two problems (CTP1 and SRN), SA-NSGA-II
performs statistically similar; and for one problem (OSY), SA-NSGA-II shows
slightly better results. NSGA-II is not able to find a near-optimal set of solutions
with the limited SEmax for any of the selected problems.

Figure 4 shows the obtained solution set for each method of representative
runs for CTP2, CTP4, CTP8, C3DTLZ4, TNK, and OSY, for which a well-
converged and well-diversified non-dominated solutions are found with 200 to
500 solution evaluations. For the difficult problem CTP2, our proposed method
converges near the true optima, which lies on the constraint boundary. Simi-
larly, for CTP8, where nine feasible islands for which three contain the Pareto-
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optimal set exist and, thus, a good exploration of the search space is needed.
For C3DTLZ4, IC-SA-NSGA-II has obtained a better diversity in the solution
set than SA-NSGA-II.

Table 1: The median normalized Inverted Generational Distance (IGD) values
out of 11 runs for NSGA-II, SA-NSGA-II and IC-SA-NSGA-II on constrained
bi-objective optimization problems. The best performing method and other sta-
tistically similar methods are marked in bold.

Problem Variables Constraints SEmax NSGA-II SA-NSGA-II IC-SA-NSGA-II

CTP1 10 2 200 3.6399 0.0237 0.0196
CTP2 10 1 200 1.4422 0.1721 0.0173
CTP3 10 1 200 1.2282 0.2752 0.0357
CTP4 10 1 400 0.8489 0.3969 0.0736
CTP5 10 1 400 0.7662 0.1145 0.0139
CTP6 10 1 400 7.7155 0.1909 0.0117
CTP7 10 1 400 1.5517 0.0164 0.0032
CTP8 10 2 400 11.6452 0.5963 0.0074

OSY 6 6 500 0.4539 0.0273 0.0381
SRN 2 2 200 0.0263 0.0112 0.0108
TNK 2 2 200 0.1281 0.0200 0.0092

C2DTLZ2 12 1 200 0.3787 0.1185 0.0484
C3DTLZ4 7 2 200 0.2622 0.1210 0.0481

CAR 7 10 200 0.2362 0.0168 0.0147

5 Conclusions

The optimization of computationally expensive optimization problems has be-
come more important in practice. Often such problems have physical or geo-
metrical constraints that are relatively computationally inexpensive and can be
formulated in equations without running the simulation. To solve these kinds
of problems, we have proposed IC-SA-NSGA-II, a surrogate-assisted NSGA-II,
which efficiently handles inexpensive constraint functions in the initial design of
experiments as well as in each iteration. We have tested our proposed method
on 14 constrained bi-objective optimization problems, and our results indicate
that efficiently handling the inexpensive constraints helps to converge faster.

This paper has focused on solving constrained optimization problems with
inexpensive constraint and expensive objective functions with very limited func-
tion calls. However, some other heterogeneous problems with different time scales
of objective and constraint evaluations must be considered next. For instance,
the constraints can be even more time-consuming than the objective function, or
the objectives and constraints can have different time scales within themselves.
After addressing such cases, there is a need for developing a unified algorithm for
generic heterogeneous optimization problems. Moreover, studies about heteroge-
neously expensive optimization problems have so far been limit to bi-objective
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Fig. 4: Solutions in the objective space of representative runs for CTP2, CTP4,
CTP8, C3DTLZ4, TNK, and OSY.

optimization problems. This paper has started to add some more complexity
by adding constraint functions. However, the effect of heterogeneity for many-
objective optimization problems shall provide more insides into exploiting the
discrepancy of evaluation times and asynchronicity.
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