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Abstract. In many practical multi-objective optimization problems, eval-
uation of objectives and constraints are computationally time-consuming,
because they require expensive simulation of complicated models. Re-
searchers often use a comparatively less time-consuming surrogate or
metamodel (model of models) to drive the optimization task. Effective-
ness of the metamodeling method relies not only on how it manages
the search process (to find infill sampling) but also how it deals with
associated error uncertainty between metamodels and the true models
during an optimization run. In this paper, we propose a metamodel-
based multi-objective evolutionary algorithm that adaptively maintains
regions of trust in variable space to make a balance between error un-
certainty and progress. In contrast to other trust-region methods for
single-objective optimization, our method aims to solve multi-objective
expensive problems where we incorporate multiple trust regions, corre-
sponding to multiple non-dominated solutions. These regions can grow
or shrink in size according to the deviation between metamodel predic-
tion and high-fidelity computed values. We introduce two performance
indicators based on hypervolume and achievement scalarization function
(ASF) to control the size of the trust regions. The results suggest that
our proposed trust-region based methods can effectively solve test and
real-world problems using a limited budget of solution evaluations with
increased accuracy.

Keywords: Surrogate modeling · metamodel · trust-region method · multi-
objective optimization.

1 Introduction

Most real-world problems involve time-consuming experiments and simulations
that cause optimization to be increasingly expensive. To face this challenge
and to reduce the computational cost, metamodels as approximations of ex-
act or high-fidelity based computational models are used for the optimization
task. There are a few challenges and decision factors in metamodel-based multi-
objective optimization. First, given a multi-objective optimization problem with
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M number of objectives and J number of constraints, one can model each objec-
tive and constraint separately thus having a total of (M +J) metamodels. Also,
one can combine all objectives using a scalarization method, e.g., weighted-sum,
ε-constraint, Tchebychev, or achievement scalarization function (ASF) [16, 26]
and metamodel them separately, thereby reducing the total number of meta-
models to (1 + J). The choice of metamodeling methodologies are discussed in
recent papers [2, 3, 5, 9, 13, 19, 21, 22] by the authors. Second, a great deal of
research has been done to formulate the criteria for finding infill or subsequent
points for high-fidelity evaluation during optimization. For example, Emmerich
et al [11] has generalized the concept of probability of improvement and the
expected improvement to find infill solutions. Next, computational cost of con-
structing surrogates is a practical issue that prohibits us to build a large num-
ber of metamodels. Finding the best metamodel or approximation method is
another concern for metamodel-based optimization. There is a wide variety of
metamodels, such as Kriging, neural network, support vector regression, polyno-
mial approximation and others, used in past studies [14]. Interestingly, the choice
of metamodeling method may vary according to early, intermediate or late stage
of the optimization process and is certainly not known a priori. Therefore, re-
searchers have attempted to use multiple surrogate models in few efforts [25].

Although most existing methods are directed towards proposing more ac-
curate metamodels or introducing efficient search schemes, there is a need for
managing error uncertainty of one particular under-performing metamodel dur-
ing optimization. A better management of a metamodel can, not only restrain
the model from becoming worse, but also boost the performance by recognizing
the inherent complexity of search regions. In this paper, we introduce a trust
region concept for multi-objective optimization to reduce model uncertainty dur-
ing metamodel-based optimization. This may allow a continuous convergence to
the Pareto-front in some cases. Therefore, we don’t completely rely on the as-
sumptions made by the metamodel from the first iteration on.

The rest of this paper is organized as follows. Section 2 presents the pre-
vious works that are relevant to the trust region, uncertainty of metamodeling
and overall metamodel-based algorithms. Section 3 discusses the new concepts
introduced in this paper. Based on those concepts, the algorithm is presented in
Section 4. Experimental settings and results are presented in Section 5. Section 6
concludes our study and suggests future work.

2 Related Studies

There have been several studies in metamodel-based multi-objective evolutionary
algorithms for constrained and unconstrained problems. ParEGO [15], MOEA/D-
EGO [27], SMS-EGO [18] and KRVEA [4] use scalarization methods (e.g., Tcheby-
cheff) to combine multiple objectives into one and solve multiple scalarized ver-
sions of them to find a trade-off set of solutions. While these methods are mostly
useful for unconstrained problems, they need to be modified for constrained sce-
narios. Hypervolume-based expected improvement [10] and maximum hypervol-
ume contribution [18] are used as a performance criteria for infill points. Few
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recent studies [4, 19] outperformed standard evolutionary multi-objective opti-
mization methods for unconstrained test problems.

Trust region methods are an effective mechanism to identify new infill points
with a specific certainty. A few researchers have suggested using metamodel-
based optimization with a trust region concept [1, 17]. They proposed a trust
region framework for using approximation models with varying fidelity. Their
approach is based on the trust region concept from nonlinear programming lit-
erature and was shown to be provably convergent for some of the original high-
fidelity problems. A sequential quadratic approximation model was used in their
study. In [17], a global version of the trust region method — Global Stochastic
Trust Augmented Region (G-STAR) was proposed. The trust region was used
to focus on simulation effort and balance between exploration and exploitation.
They used Kriging as a metamodel for unconstrained single-objective optimiza-
tion problems only. Few recent studies have considered for bi-objective [24] and
multi-objective [12] problems with a convergence guarantee under mild condi-
tions.

3 Trust Region Method for Single-Objective
Optimization

The classical trust region method for single-objective optimization proceeds by
building a metamodel f̂(.) for the original objective function f(.). The prediction

of the metamodel f̂(.) is minimized to obtain new infill points [1]:

Minimizeq f̂(q), Subject to ∥q − p∥ ≤ δk. (1)

Here p is the current iterate (solution) and q is the new predicted point that

can replace p in the next iteration. Typically, a quadratic model is used as f̂(.).
The search is restricted within a radius δk from the current point p so that the
metamodel approximates f well. The distance ∥q − p∥ can be calculated using
any norm. Without loss of generality, we use the Euclidean norm here. The
trust region is updated by comparing the exact and the predicted value of the
new point (f(q) and f̂(q)) with respect to the old point p by the following
equation [1]:

r =
f(p) − f(q)

f(p) − f̂(q)
. (2)

Depending on the performance indicator r, the trust region might increase, de-
crease or remain the same. To decide what operation should be performed, two
constants r1 and r2 are defined and the trust region is adapted as follows:

- If the model fails to improve objective value (that is, r < r1), we reduce the
trust region by multiplying existing δk with c1 (< 1) and do not replace p
with the new point q.

- If the model performs good in predicting function improvement from pre-
vious solution (that is, r > r2), we increase δk for the next iteration by
multiplying existing δk with c2 (> 1) and we replace the old point p by new
point q.
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- Otherwise, we leave the trust region size δk as it was before.

We replace the old point p with the new point q, whenever q is a better point.
The current point (p or q) is always associated with the updated trust radius.
Suitable values of c1 and c2 are used.

3.1 Challenges and Motivation for Multi-Objective Optimization

The main challenges for applying the trust region concept in multi-objective evo-
lutionary algorithms (MOEA) are handling multiple objectives and constraints.
In addition, since MOEAs are population based methods, we also need to deal
with multiple solutions and their individual trust regions. Moreover, there is
a need for a meaningful performance metric to adapt trust radii of multiple
high-fidelity solutions.

4 Proposed Trust Region in Metamodel-based
Multi-objective Evolutionary Algorithm

A multi-objective optimization problem can be formulated as follows. Here, we
omit the vector notation of {x, p, q} and F to denote a multi-dimensional point
or objective vector.

Minimize F (x) = (f1(x), f2(x), . . . , fM(x))

Subject to gj(x) ≥ 0, ∀j ∈ {1, . . . , J}

x ∈ Ω ⊆ Rn and, F ∈ Λ ⊆ RM
(3)

Here, feasible variable space and respective feasible objective space are defined by
Ω and Λ, respectively. The goal of this optimization is to find the best trade-off
hyper-surface.

4.1 Proposed Trust Region Concept

We propose several modifications on the classical trust region method in order to
make it applicable to metamodel-based multi-objective evolutionary algorithms:

1. We store all high fidelity solutions in an archive A, instead of replacing them
with better solutions.

2. We maintain an independent trust region in the variable space for each
solution. The regions may overlap with each other. They can either grow
or shrink in size independently during optimization according to the quality
of prediction. The algorithm restricts its search within the combined trust
regions of A.

3. To compare a newly predicted point q with the neighbor point p (q is within
trust region of p), we define two performance indicators PI that calculate
r (analogous to Equation 2) for a multi-objective problem. Moreover, we
propose a novel scheme to compare between feasible and infeasible solutions.

4. If the new point q is within the trust regions of multiple points P ⊆ A, then
we update the trust radius δk for each of them using pair-wise performance
metric (PI). The trust radius of point q will be the minimum of trust radii
of P .
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Thus, we optimize the following metamodel-based optimization to obtain a set
of new infill points:

Minimizeq∈Ω f̂1(q), . . . , f̂M(q)

ĝj(x) ≥ 0, ∀j ∈ {1, . . . , J}

Subject to ∥q − p∥ ≤ δpk, ∃p ∈ A

(4)

Here p ∈ A are the exactly evaluated solutions from the current archive.
Figure 1 illustrates the population based extension of the trust region method.
Five exactly evaluated points {P1, P2, P3, P4, P5} with their trust regions (regions
within the circles) are shown. Say, a new point Pnew is predicted by the algorithm
after optimizing on the model space. Note that Pnew is inside the trust regions
of P1 and P2. Assuming that the performance indicator reports an improvement
of Pnew over P2, but no improvement over P1. Then we reduce the size of the
trust region of P2 and increase that of P1. The trust radius of the new point will
be the smaller of the trust radii of P1 and P2.

4.2 Performance Indicators for Updating Trust Radius

 Variable 1

 V
a
r
ia

b
le

 2

P1

P2
P3

P4

P5

Pnew

Fig. 1: Adaptive trust region con-
cept for multiple solutions.

To update the trust radius of solutions, we
propose two performance indicators (PI).

Scalarization based Performance In-
dicator (PIASF ): Scalarization method
is used to convert a multi-objective prob-
lem into a number of parameterized single-
objective optimization problems. We use
the achievement scalarization function (ASF)
[26] as a performance indicator. The scalar-
ization is based on a weight vector w and
a reference point z. The ASF formulation is
given below:

ASF(x) =
M

max
i=1

fi(x) − zi
wi

. (5)

The proposed performance criteria using
ASF function for trust radius update is pre-
sented as follows:

PIASF (q) =
ASF (p) −ASF (q)

ASF (p) − ÂSF (q)
. (6)

Here ÂSF is obtained from predicted objectives. The estimated improvement
may differ for different reference directions.

Hypervolume based Performance Indicator (PIHV ): Hypervolume [10]
is a widely used indicator in multi-objective optimization. It takes a set of so-
lutions and a reference point, and computes the dominated region (in objective
space) enclosed by the set and the reference point. In order to find the improve-
ment of a new point over old point, we calculate the difference of their absolute
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hypervolume measures. We include archive points (A) as a common ground
for computation. We then compute the ratio between actual improvement and
predicted improvement and adjust the trust radii of old points. The predicted
hypervolume is calculated by the objective values evaluated in model space us-
ing F̂ (.). Since larger values indicate better hypervolume, we use negative of the
hypervolume:

PIHV (q) =
HV (F (A) ∪ F (q)) −HV (F (A))

HV (F (A) ∪ F̂ (q)) −HV (F (A))
. (7)

Performance Indicator for Constrained Problems: We use constrained
violation CV function [7], by accumulating violation of each constraint function
(gj(x) ≥ 0), given as: CV(x) = ∑

J
j=1⟨ḡj(x)⟩, where the bracket operator ⟨α⟩ for

g is −α if α < 0 and zero, otherwise. The functions ḡj are the normalized version
of constraint functions gj [7].

PICV (q) =
CV (G(p)) −CV (G(q))

CV (G(p)) −CV (Ĝ(q))
(8)

Here,G and Ĝ are the vector representations of constraint functionsG = (g1, . . . , gJ)
and Ĝ = (ĝ1, . . . , ĝJ), respectively.

4.3 Overall Trust Region Adaptation

We now describe the procedure of updating the trust regions using the perfor-
mance indicators described above. Assume that solution p is one of the high-
fidelity points and q is the predicted new point which is within the trust region
of p. We measure the performance improvement by the following equation.

r =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

PIHV (q) or PIASF (q), if both p and q feasible,

r2 + ε, if p infeasible, q feasible,

r1 − ε, if p feasible, q infeasible,

P ICV (q), otherwise.

(9)

Here ε > 0 ∈ R is a small positive number. The pre-defined positive constants
0 < r1 < r2 < 1 are the hyper-parameters that regulate expansion and contraction
of the trust regions. After estimating performance indicator PI of a new point
q with respect to old point p we update trust radius of p by the following rule.

δpk+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c1δ
p
k if r < r1

min{c2δ
p
k,∆max} if r > r2

δpk otherwise

(10)

The positive constants 0 < c1 < 1 and c2 > 1 controls the size of subsequent trust
radius. As mentioned earlier, we assign the trust radius of q to be the smaller of
the trust radii of all neighboring solutions of which q is inside their trust regions.
The parameter ∆max is the largest allowed trust radius for the solutions.
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5 Proposed Overall Algorithm

We now present trust region based algorithm for multi-objective optimization
for low-budget problems. We refer our algorithm to TR-NSGA-II.

The overall procedure is described in Algorithm 1, the metamodeling al-
gorithm starts with an archive of ρ initial population members created using
the Latin hypercube sampling (LHS) method on the entire search space. The
trust radii of initial solutions are then set to a predefined initial value δinit.
Thereafter, these solutions are evaluated exactly (high-fidelity) and metamod-

els are constructed for all M objectives (f̂i(x); i = 1, . . . ,M) and J constraints
(ĝj(x); j = 1, . . . , J). Then, a multi-objective evolutionary algorithm NSGA-II [6]
with faster non-dominated sorting algorithm [20, 23] is run for τ generations
starting with µ initial random solutions in model space. The NSGA-II algorithm
returns min(µ,E − e) solutions where e is the current number of high-fidelity
solution evaluations. The solutions are then evaluated using high-fidelity sim-
ulation and included in the archive (line 13). Then, new metamodels are then
build from scratch and the process is repeated until termination. The trust radii
are updated after each NSGA-II run, for new and old points according to the
update rules discussed before. We have used both Hypervolume based and ASF
based performance indicator alternatively for updating trust radius. ASF values
are computed using reference point set W . PIASF is calculated using the best
ASF values for the new solutions.

Algorithm 1: Trust Region Based Algorithm or TR-NSGA-II

Input : Obj: [f1, . . . , fm]T , Constr: [g1, . . . , gJ]
T , n (vars), ρ (sample

size), E (max. high-fidelity SEs), NSGA-II (multi-obj EA) with
pop-size µ, number of generation for model optimization τ ,
other parameters of NSGA-II Γ , Constraint violation function
CV, Trust region parameters δinit,∆max, c1, c2, r1 and r2

Output: Solution set PT
1 t, e← 0;
2 Pt,Ft,Gt ← ∅;
3 Pnew ← LHS(ρ,n)// Initial solutions

4 δ` ← δinit,∀` ∈ {1, . . . , ρ};
5 while True do

6 Finew ← fi(Pnew),∀i ∈ {1, . . . ,M}// eval obj.

7 Gj
new ← gj(Pnew),∀j ∈ {1, . . . , J}// eval constr.

8 if t > 0 then

9 F̂
i

new ← f̂ it (Pnew),∀i ∈ {1, . . . ,M}// predicted

10 Ĝ
j

new ← ĝjt (Pnew),∀j ∈ {1, . . . , J}// predicted

11 δ ← Update TrustRegion(Ft, F̂new,Gt, Ĝnew, δ)

12 end
13 Pt+1,Ft+1,Gt+1 ← (Pt ∪Pnew), (Ft ∪ Fnew) and (Gt ∪Gnew);
14 e← e + ∣Pnew ∣;
15 break if e ≥ E;

16 f̂ it+1 ←Metamodel(Fit+1),∀i ∈ {1, . . . ,M}// metamodel obj.

17 ĝjt+1 ←Metamodel(Gj
t+1),∀j ∈ {1, . . . , J}// metamodel constrt.

18 Pnew ← NSGA-II(f̂t+1, ĝt+1, µ, τ, Γ,E − e,CV, δ); // Optimize model

space

19 t← t + 1;

20 end
21 return PT ← filter the best solutions from Pt+1

In one epoch ∣W ∣ solutions are returned directly by running NSGA-II while in
another epoch we choose ∣W ∣ solutions (after running NSGA-II) such that they
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minimizes ASF according to w ∈W reference directions. In the end, trust regions
are updated according to Hypervolume and ASF respectively. The major steps
of this method are outlined in Algorithm 1.

6 Results

We present experimental results obtained by running four different optimization
algorithms. We refer our algorithm as TR-NSGA-II. We compare the proposed
algorithm with three other baseline algorithms: a) M1-2 [9] which works sim-
ilar to our TR-NSGA-II (Algorithm 1) but without the trust region, and b)
state-of-the-art multi-objective evolutionary method NSGA-II [8] and recently
proposed K-RVEA [4]. We got source code of K-RVEA from the authors. The
code currently doesn’t handle constraints, thus we don’t apply it to constrained
problems. In NSGA-II, we use the binary tournament selection operator, sim-
ulated binary crossover (SBX), and polynomial mutation with parameters as
follows: population size = 10n, where n is a number of variables, number of
generations = 100, crossover probability = 0.95, mutation probability = 1/n,
distribution index for SBX operator = 15, and distribution index for polynomial
mutation operator = 20. The NSGA-II procedure, wherever used, uses the same
parameter values. Initial trust radius is δinit = 0.75∆max for all problems, where
∆max =

√
n is the largest diagonal of an n-dimensional unit hypercube. We take

c1 = 0.75, c2 = 1.10, r1 = 0.9, r2 = 1.05 for all the problems. All the distances cal-
culated here are in the normalized space. We perform 11 runs for each algorithm
on all test and engineering design problems.

For NSGA-II, we have used population size 20 to maximize the evolution
effect and that provided the best results for these low-budget problems. Other
parameters are kept identical across all algorithms to provide a representative
performance of each algorithm. Median IGD values and p-values of Wilcoxon
rank sum test are provided in Table 1.

6.1 Two-Objective Unconstrained Problems

First, we apply our proposed method to two-objective unconstrained problems
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 with ten (n = 10) variables, ∣W ∣ = 21
reference directions, and with a maximum of only E = 500 high-fidelity solution
evaluations. The obtained non-dominated solutions are shown in Figure 3(a)-(e).
It is evident from the figure that trust region method with hypervolume perform
better than method M1-2 without trust region. Because of the lack of enough
solution evaluations, NSGA-II could not converge enough to these problems.
On the contrary, trust region based methods provide increased accuracy (for
example TR-NSGA-II has IGD 0.00121 compared to 0.01161 of M1-2 for ZDT1)
for these test problems. K-RVEA performed the third best best in ZDT1 with
IGD = 0.07964. TR-NSGA-II performs the best for all ZDT problems both in
terms of GD and IGD. For ZDT4, all the methods find it hard to converge and
perform equivalently (with p-value 0.05) except NSGA-II. For ZDT6, K-RVEA
has better GD value but TR-NSGA-II has a better distribution (IGD=0.31070).
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Fig. 3: Obtained non-dominated solutions of median run for 11 test problems using four
different algorithms are shown.

6.2 Two-Objective Constrained Problems

Next, we apply our algorithms to two-objective constrained problems: BNH,
SRN, TNK, and OSY [8], For each problem, we use ∣W ∣ = 21 reference directions
and a total of 500 solution evaluations. The obtained non-dominated solutions
are shown in Figure 3(f)-(i). With the trust region method, we find better con-
vergence as well as diversity for OSY and TNK, although no extra effort has
been made to maintain diversity. BNH, SRN and TNK have only two variables
and two constraints. NSGA-II, along with all other methods, performs well in
BNH and SRN. We have achieved increased accuracy (IGD 0.00141 compared to
0.01543 of M1-2) for TNK problem. OSY is a difficult problem with six variables
and six constraints. But our proposed method is able to find a good distribution
on the true Pareto-front with only 500 solution evaluations with better IGD and
GD. In SRN, method M1-2 performs the best in terms of both GD and IGD.

6.3 Three-Objective and Real-world Problems

We have applied three methods (except K-RVEA) to three-objective constrained
problem C2DTLZ2 (Figure 3(k)). For C2DTLZ2, M1-2 without trust region
performs the best. Trust region based method TR-NSGA-II performs the second
best. Due to restricted search region in 3-dimensional space, our method suffers
from premature convergence. We also apply our algorithm to a real-world welded
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beam design problem. Surprisingly, with the optimum population size, NSGA-II
performs better in terms of GD, whereas our method has the best IGD.

Table 1: IGD values for 11 test problems are computed. Best algorithm and other
statistically similar methods are marked in bold.

Problem/Method
NSGA-II M1-2 TR-NSGA-II K-RVEA

IGD GD IGD GD IGD GD IGD GD

ZDT1
0.27131 0.34582 0.01161 0.01091 0.00121 0.00122 0.07964 0.03715

p=1.852e-05 p=1.852e-05 p=7.7801e-04 p=7.4613e-04 - - p=1.852e-05 p=1.852e-05

ZDT2
0.98265 0.61637 0.00975 0.00755 0.00057 0.00081 0.03395 0.00080

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - p=0.2851 p=1.852e-05 -

ZDT3
0.32080 0.38940 0.01251 0.00761 0.00870 0.00230 0.02481 0.00650

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - - p=1.852e-05 p=1.802e-04

ZDT4
25.24040 34.43350 7.11881 10.10851 6.97620 12.92170 4.33221 4.50901

p=1.852e-05 p=1.852e-05 p=0.7928 p=0.1007 p=0.8955 p=0.2934 - -

ZDT6
5.00571 4.80922 1.55861 2.27535 0.31070 2.84941 0.65462 1.50551

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=0.001 - p=0.0151 p=1.852e-05 -

BNH
0.78981 0.19842 0.45272 0.13696 0.09651 0.09092 - -

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - -

SRN
1.66162 2.11235 0.67285 0.75337 1.44045 1.74951 - -

p=1.852e-05 p=1.852e-05 - - p=1.852e-05 p=1.852e-05

TNK
0.04182 0.01341 0.01543 0.01008 0.00141 0.00201 - -

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - -

OSY
35.80211 27.43991 4.78063 0.59202 0.16731 0.25063 - -

p=1.852e-05 p=1.852e-05 p=1.852e-05 p=1.852e-05 - -

Welded Beam
1.10272 0.21092 0.92692 1.68806 0.07681 1.72811 - -

p=1.852e-05 - p=1.8267e-04 p= 0.0042 - p=0.0012

C2DTLZ2
0.13733 0.04792 0.03355 0.02373 0.06411 0.02991 - -

p=1.852e-05 p=1.852e-05 - - p=1.8267e-04 p=1.8267e-04

Median IGD values of 11 runs of 11 test problems are presented in Table 1 for
all the algorithms. The table demonstrates that trust region methods perform
usually better than non-trust region based methods whenever solutions reach
to near Pareto-optimal front. It would be interesting to incorporate our method
to other recently proposed multi-objective evolutionary algorithms including K-
RVEA.
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Fig. 5: Trust region adaptation for evolving population is presented. Minimum, median,
average and maximum δ values during the optimization are shown.

6.4 Dynamics of Trust Region Adaptation

In Figure 5, we investigate the dynamics of trust region adaptation for the evolv-
ing population in different test problems. The value of δ starts from the

√
n where

n is number of variables. The maximum value remains the same for most ZDT
problems because the obtained non-dominated solutions go beyond these regions
after some epochs. In contrast, minimum, median and mean values are always
decreasing throughout the optimization process. As discussed before, based on
the improvement of the neighboring solutions, the regions are either expanded
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or contracted. In order to increase the trust region, the evolving population has
to maintain r2 = 1.05 or 5% Hypervolume improvement over previous genera-
tions. In general, this condition is hard to meet when solutions are converged in
the end. Therefore, our method focus more on exploitation in the last stage of
optimization.

7 Conclusions

In this paper, we have presented an adaptive trust region concept for multi-
objective optimization with a low budget of solution evaluations. Trust regions
are used as a constraint in the variable space during optimization to deal with
uncertainties of metamodels. This study makes three main contributions: First,
we have proposed two performance indicators based on scalarization and hy-
pervolume to adapt appropriate trust regions. Second, a constraint handling
scheme is presented in order to handle the trust region adaptation in the pres-
ence of constraints. Third, since multi-objective optimization aims to find a set of
Pareto-optimal solutions, we need to manage multiple trust regions with multiple
trade-off solutions compare to single best solution, as proposed in the classical
literature. Our results on several test and one engineering design problems have
shown that we can achieve better convergence using the proposed method than
that without a trust region. While other MOEAs spend thousands of function
evaluations, our trust region based method can solve test and real-world prob-
lems with limited budget yet with increased accuracy.

The current study has introduced some new parameters, such as the initial
trust radius and their updating factors. Although our experiments are based
on reasonable parameter settings, a detailed parameter study is a good starting
point for future research. Moreover, other distance metrics besides the Euclidean
norm can be used to define a trust region. Also, it needs to be ensured that
the trust region concept scales up for problems with high-dimensional variable,
objective, and constraint spaces. Nevertheless, this pilot first study has made one
aspect of metamodeling task for multi-objective optimization clear – a balance
between a trust of metamodels around high-fidelity points and progress of the
overall search is essential for an efficient application.
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