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Abstract. Most practical optimization problems are multi-objective in
nature. Moreover, the objective values are, in general, differently scaled.
In order to obtain uniformly distributed set of Pareto-optimal points, the
objectives must be normalized so that any distance metric computation
in the objective space is meaningful. Thus, normalization becomes a cru-
cial component of an evolutionary multi-objective optimization (EMO)
algorithm. In this paper, we investigate and discuss the normalization
procedure for NSGA-III, a state-of-the-art multi- and many-objective
evolutionary algorithm. First, we show the importance of normalization
in higher-dimensional objective spaces. Second, we provide pseudo-codes
which presents a clear description of normalization methods proposed in
this study. Third, we compare the proposed normalization methods on
a variety of test problems up to ten objectives. The results indicate the
importance of normalization for the overall algorithm performance and
show the effectiveness of the originally proposed NSGA-III’s hyperplane
concept in higher-dimensional objective spaces.

Keywords: Many-objective Optimization · NSGA-III · Normalization.

1 Introduction

The need to optimize several objectives at a time has been investigated for
years, and various algorithms have been proposed [21]. The desired result is a
non-dominated set of solutions close to the true Pareto-optimal front [13], in-
stead of a single optimal solution. The non-dominated set of solutions gives us
the possibility to make a suitable decision for choosing a single preferred solution
following the algorithm’s execution and provides useful information about opti-
mal solutions with respect to different preferences. Also, the decision maker can
compare the trade-offs between different solutions and therefore justify his/her
choice.

However, the fact that the target space has more than one dimension brings
new challenges which must be addressed in designing the optimization algorithm.
To deal with multiple dimensions in the objective space, reference directions
express the trade-off between solutions with respect to each objective. Usually,
either the user provides them directly or they are sampled uniformly in the unit
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space. If a uniformly distributed set of reference directions can be supplied and
an EMO algorithm can find one or more Pareto-optimal solutions close to each
reference direction, a widely distributed set will be achieved at the end.

Clearly, such a process will involve distance computations in the objective
space, thereby necessitating a normalization procedure within the algorithm,
which will consider the range of each objective on a same scale. In contrast to test
problems where variables and objectives are already nicely scaled, in practical
problems, the objective space range for each objective may differ by several
magnitudes. Therefore, for any distance or trade-off calculation, normalization
of objectives becomes an inevitable task.

In this paper, we investigate and discuss the normalization procedure of
NSGA-III, a state-of-the-art evolutionary multi- and many-objective algorithm.
In addition to the originally proposed normalization procedure of NSGA-III,
we suggest a few other normalization methods. Our purpose in this paper is
to: (i) show the importance of normalization in the objective space for high-
dimensional multi-objective problems, (ii) compare different normalization pro-
cedures, and (iii) provide pseudo-codes for different normalization procedure.

In the remainder of this paper, we will first present a review of some past
studies expanding upon or applying NSGA-III. Thereafter, in Section 3 we pro-
vide a brief description of the algorithm including the role of normalization.
Then, different methodologies for normalization are discussed in depth, and a
hands-on example is provided in Section 4. Afterwards, in Section 5, we present
our results evaluated on a variety of test problems with up to ten objectives.
Finally, conclusions of the study are presented in Section 6.

2 Related Studies
The need of optimizing more than one objective at a time brought attention
of the multi-objective optimization research area. Also, normalization is often
assumed implicitly and not discussed in detail, the importance to solve practical
problems is indisputable.

The normalization procedure for MOEA/D [20] was investigated in [11]. The
normalization was based on the PBI (penalty-based boundary intersection) mea-
sure by considering lower and upper bound estimations. The study showed that
the normalization has both positive and negative effects on the performance on
test problems. Interestingly, the normalization showed positive effects for test
problems that do not need any normalization. Furthermore, three representa-
tive strategies for estimating the ideal point in MOEA/D were studied [17].
The ε value, which is subtracted from the minimum of each objective in the cur-
rent population, is varied: small (pessimistic), large (optimistic), or decreasing
over time (dynamic). The authors found out that the strategy has an effect on
the exploration and exploitation of the algorithm and suggest to use the dy-
namic strategy for unknown problems. Also, the effect of local optimization to
improve solutions contributing to the ideal point has been investigated [15]. The
study showed that the local search helps to improve the diversity of the final
non-dominated population for certain problems by converging close to the true
ideal point in an early phase.
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Moreover, NSGA-III [5,12], designed to solve problems with more than three
objectives, was investigated since its publication in 2014, and some extensions
and improved versions were proposed. For instance, a unified approach for mono-,
multi- and many-objective problems, U-NSGA-III [14], introduces more selection
pressure during the mating selection. Moreover, NSGA-III-OSD [3] decomposes
the objective space into several subspaces by clustering the reference directions
uniformly. Each subspace has its own population and PBI as decomposition
method. Additionally, EliteNSGA-III [10] improves the diversity and accuracy of
the resulting Pareto-front. An elite population archive is maintained to preserve
previously generated elite solutions that would probably be eliminated by the
reference survival selection procedure.

Moreover, NSGA-III has been applied to industry problems, for instance
environmental dispatch problem [2], hydro thermal wind scheduling problem [19],
and car engine design problem [9]. Also, NSGA-III has been implemented in
different programming languages and popular optimization frameworks, such as
jMetal [8], moeaframework [1], and PlatEMO [16].

3 NSGA-III

In the following, NSGA-III is explained and the role of normalization during
the survival selection is illustrated. The basic framework remains similar to
NSGA-II [6] with significant modifications to the mating and survival selec-
tion. In NSGA-III, parents to be used for recombination are selected randomly.
The survival selection considers the M -dimensional objective space by using the
reference direction concept. Reference directions Z represent trade-offs between
solutions regarding their objective values. They are either provided a priori by
the user or created uniformly, commonly executed using the Das and Dennis’s
technique [4].An outline of the survival selection is shown in Algorithm 1. Considering
an optimization problem with M objectives and an evolutionary algorithm with
a population size of N , generation t begins with the current population P (t)

known as the parent population, creates an offspring population Q(t) through
recombination and mutation, and merges two populations together to create
R(t) = P (t) ∪ Q(t). The survival selection has to return P (t+1) – the next gen-
eration population of size N . The creation of P (t+1) is as follows. First, the
individuals of the merged population R(t) are sorted by non-dominated rank
which results in a list of fronts (F1, F2, . . .). To do this, the set of surviving solu-
tions S is initialized as an empty set. Thereafter, it is iterated through the list
of fronts and the current front Fi is appended to S, if the resulting number of
individuals does not exceed N . The front where |S ∪ Fi| ≥ N is the potential
splitting front FL. In case, |S|+|FL| = N no splitting is necessary and all surviv-
ing individuals are already determined. Otherwise, a niching method is employed
to choose those FL members that are associated with the least represented ref-
erence directions already associated by individuals in S. To assign individuals
to the reference directions Z, S is normalized by using ẑ∗ as a lower and the
nadir point estimation ẑnad as an upper bound. Therefore, each already selected
individual k in S is assigned to the closest reference direction πk having a per-
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Algorithm 1: NSGA-III Survival Selection

Input: Merged Population R(t), Number of surviving individuals N , Reference
Directions Z, Ideal Point Estimation ẑ∗, Nadir Point Estimation ẑnad

Output: Surviving Individuals P (t+1)

1 (F1, F2, . . .)← non dominated sort(R(t))

2 S = ∅, i = 1
3 while |S|+ |Fi| < N do S ← S ∪ Fi; i = i+ 1
4 FL ← Fi

5 if |S|+ |FL| = N then S ← S ∪ FL
6 else

/* Normalize objectives space and update boundary estimation */

7 S̄, F̄L, ẑ
∗, ẑnad ← normalize(S, FL, ẑ

∗, ẑnad)

/* niche count, assigned Zi, perpendicular dist to Zi */

8 ρ, π, d← 0
9 for k ← 1 to |S| do

10 πk, dk ← associate(S̄k, Z); ρπk ← ρπk + 1
11 end

// Remaining individuals from FL to fill up S
12 S ← S ∪ niching(F̄L, n− |S|, ρ, π, d)

13 end

14 P (t+1) ← S

15 return P (t+1)

pendicular distance of dk. The niche count ρ is kept track of and incremented
by one for each assignment. Finally, the niching method selects from F̄L the
remaining N − |S| individuals using ρ, π, d. A population member associated
with an under-represented or un-represented reference direction is immediately
preferred. With a continuous stress for emphasizing non-dominated individuals,
the whole process is then expected to find one population member corresponding
to each supplied reference direction close to the Pareto-optimal front.

4 Normalization Procedure

In this section, we investigate different normalization procedures for NSGA-III.
The normalization relies on lower and upper boundaries in the objective space
that correspond to the estimated ideal point ẑ∗ and the estimated nadir point
ẑnad. Therefore, it is sufficient to provide the estimation for both points in order
to normalize. The normalized value āi in the i-th objective is then calculated by

āi =
ai − ẑ∗i
ẑnadi − ẑ∗i

. (1)

The open question is how to find estimation the boundary points ẑ∗ and
ẑnad, so that non-dominated solutions are properly emphasized. The ideal point
estimation ẑ∗ is rather simple and the calculation is based on the smallest value
in each objective we have observed since the start of the optimization run:
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ẑ∗j = min (ẑ∗j ∪Rj), (2)

where Rj denotes the j-th objective of the merged population. Please note that
the ideal point should not be calculated from R at each generation, but being
updated. The survival selection of NSGA-III does not guarantee each individual
contributing to an ideal point to survive in higher dimensions. For this reason,
an update is necessary for a correct estimation of the ideal point.

The nadir point estimation is more tricky and is one of the main cruxes of
this study. Let us first discuss the requirements and goals for estimating the
nadir point in the context of many-objective evolutionary algorithms.

(i) Estimated ideal point must dominate estimated nadir point: Since
it is normalized between the ideal and nadir point estimation, we need to
make sure that ∀ i ∈ [1, ..,M ] : ẑnadi > ẑ∗i . In practice, the formulation
should be more strict where ∀ i ∈ [1, ..,M ] : ẑnadi − ẑ∗i > εnad with εnad
being our assumption about the minimum range of the Pareto-front for all
objectives. A minimum difference εnad prevents having floating point issues
and loosing the diversity during the survival selection.

(ii) Estimated nadir point must converge to the true nadir point with
generations: Finally, when the population converges to the true opti-
mum, the estimated nadir point should converge to the true nadir point.
When both ideal and nadir points are estimated close to their true values,
the EMO algorithm gets stabilized and works efficiently to find a well-
distributed set of near Pareto-optimal points.

(iii) Estimated nadir point must gradually change from one generation
to the next: This requirement is especially important in an evolutionary
context, because the normalization is applied before assigning to reference
directions and directly influences the survival method. An abrupt change of
the normalization process will make previous generation’s non-dominated
solutions meaningless, thereby creating a restart situation.

In the following, we will suggest a number of possible normalization proce-
dures. Towards this goal, we shall revise the hyperplane concept in Section 4.3
which was proposed in the original publication and present corner cases that
must be handled on an implementation level.

4.1 Maximum of Non-dominated Front (MNDF)

Straightforwardly, we can concatenate the maximum of each objective of the non-
dominated front of each generation and construct the nadir point. Assuming the
algorithm converges eventually to the entire Pareto-optimal front, the estimated
nadir point will be equal to the true nadir point. Since the method is based
on the current non-dominated front in each generation, some special degenerate
cases must be addressed. If the population has only one non-dominated solution,
this solution might also be equal to the ideal point. This will cause a division by
zero problem to Equation 1. In this case, we propose to consider the next non-
dominated front for the estimation of the nadir point. This process can continue
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until the difference between estimated nadir and ideal points becomes larger
than a pre-specified threshold εnad.

4.2 Maximum of Extreme Points (ME)

We can use the achievement scalarization function (ASF) [18] along the axes to
find M extreme points. The ASF function is defined by:

ASF (f(x), w, ẑ∗) =
M

max
i=1

fi(x)− ẑ∗i
wi

, (3)

where the weight vector w of the k-th objective is wk = 1 and wi = εasf , if i 6= k.
For our experiments we set εasf = 10−6. The procedure to update the extreme
points each generation is presented in Algorithm 2. We find the extreme points by
combining the merged population with the current extreme points. This ensures
that the extreme points get an update, instead of a straightforward replacement
all the time. Then, the ASF function scalarizes multiple objectives into a single
value. We simply choose the solution with the minimum ASF value having at
least εnad different in the i-th objective. Finally, we set the extreme point e(i) to
the objective vector of the index found.

Algorithm 2: Maximum of Extreme Points

Input: R, ẑ∗, Current Extreme Points e
Output: Updated Extreme Points e

1 A← R ∪ e
2 for i← 1 to M do
3 w ← (ε1asf , . . . , ε

M
asf )

4 wi ← 1
5 k ← argmin(ASF(A,w, ẑ∗), εnad),

6 e(i) ← A(k)

7 end

4.3 Revised Hyperplane through Extreme Points (HYP)

In the following, we revise the idea implemented in the original NSGA-III. We
analyze the hyperplane concept on implementation level, where a number of
exceptions must be handled to ensure the algorithm will not fail – a number of
which we describe below.

Negative Intercepts The hyperplane is found in the translated space e′ ←
e − ẑ∗ and the intercepts I are the intersections with the coordinate axes. The
intercepts with the axes in the translated space represent the estimation of the
range of the Pareto-front. For this reason, the intercepts are required to be
positive. However, the hyperplane through the extreme points might intersect the
axis not in the positive orthant. Let us consider the following scenario, illustrated
in Figure 1a, with solutions in the objective space f (1) = (1.0, 0.2, 0.0), f (2) =
(0.4, 0.1, 0.4), and f (3) = (0.1, 0.0, 1.0). Each point is an extreme point with
respect to the achievement scalarization function along an axis: f (1) along f1,
f (2) along f2, and f (3) along f3. The intercepts of the hyperplane will result in
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I = (−1.4, 0.1167, 0.933). Obviously, the intercept with the first axis is negative
and cannot be used for normalization.

No unique hyperplane exists A unique M -dimensional hyperplane through
the extreme points can only be found if all points are linearly independent from
each other. On implementational level, a matrix with the extreme points as
row vectors has to be inverted to obtain the axis intercepts. Linearly dependent
rows form a singular matrix, where an exception will be thrown during the inver-
sion. Moreover, the extreme point selection does not guarantee to select different
points for different axes. For instance, let us consider three non-dominated points
f (1) = (0.8, 0.5, 0.5), f (2) = (0.1, 0.3, 0.9), and f (3) = (0.4, 0.1, 0.9), as shown in
Figure 1b. The extreme points are selected using the achievement scalarization
function for each axis. Here, f (1) will be chosen for both f1 and f2 axes, and
f (2) for f3. Because f (1) is chosen for two axes, the matrix to be inverted is
singular and a unique hyperplane does not exist. Additionally, numerical insta-
bility through floating point calculations depending on the library used for the
inversion must be addressed as well.
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(a) Negative Intercepts in the objective
space: f (i) are illustrated by blue dots
and axes intercepts by red squares.
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Fig. 1: Two degenerate cases of HYP normalization method.

Pseudo-code of HYP For any implementation using the hyperplane idea, the
above presented scenarios must be addressed. In these cases, we propose the
algorithm to fall back to the worst point of the current non-dominated front or
of the population. Algorithm 3 illustrates the procedure using the hyperplane
idea and handling the degenerate cases. Note, that our procedure requires the
worst point estimation ẑw. In contrast to the ideal point estimation ẑ∗, we define
ẑw having the largest value observed so far, for each objective. We use ẑw as an
upper bound of ẑnad. With the check, if any intercept is smaller than εnad, we
ensure that the hyperplane has no negative intercepts and the resulting nadir
point estimation is significantly larger than ẑ∗. Also, we make sure that the
resulting nadir point estimation Ik + ẑ∗k is not larger than our upper bound ẑwk .
If one of these requirements is not met, we declare the hyperplane as not useful
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for the normalization purpose and, therefore, the nadir point estimation is set as
the maximum of each objective of current non-dominated population members.

Finally, we make sure the nadir point estimation satisfies the first require-
ment, being dominated by the estimated ideal point. If it is not, then we use the
maximum of corresponding violating objective in the population.

Algorithm 3: Hyperplane through extreme points.

Input: Merged Population R, Non-dominated Fronts (F1, .., FK), ẑ∗, Worst
Point Estimation ẑw, Extreme Points e

Output: Nadir Point Estimation ẑnad

1 e← update extreme points(R, ẑ∗, e)
2 b← FALSE

3 try:
4 A′ ← find hyperplane(e, ẑ∗)
5 I ← find intercepts(A′)
6 for k ← 1 to M do

7 ẑnadk ← Ik + ẑ∗k
8 if Ik < εnad or ẑnadk > ẑwk then
9 b← TRUE

10 break

11 end

12 end

13 catch Error : b← TRUE

/* Fall back to the maximum in each objective of current front */

14 if b = TRUE then

15 for i← 1 to M do ẑnadi ← max in objective(F1, i)
16 end

/* Nadir point must be significantly larger in each objective */

17 for i← 1 to M do

18 if ẑnadi − ẑ∗i < εnad then ẑnadi ← max in objective((F1 ∪ ... ∪ Fk), i)
19 end

5 Results
In this section, we present the simulation results of NSGA-III using the pro-
posed normalization procedures1. First, we analyze the ideal and nadir point
estimation error over generations. Second, we present the performance of the
proposed normalization procedures on test problems. We use the scalable multi-
objective optimization test problems suite, DTLZ [7], for our evaluation. Also,
we investigate scaled versions of these problems, where objectives are multiplied
with increasing factors. We conducted the experiment analogous to the original
publication of NSGA-III. Therefore, we refer to [5] for details about the experi-
mental setup and algorithm parameters, such as references lines, population size,
number of generation and recombination operators. We run each algorithm 50
times on each test problem.

1 The source code is freely available at https://github.com/msu-coinlab/pymoo
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We compute the following squared ideal point and nadir point estimation
errors to track the progress of them through generations:

ê∗ =

m∑
i=1

(
ẑ∗i − z∗i
znadi − z∗i

)2

ênad =

m∑
i=1

(
ẑnadi − znadi

znadi − z∗i

)2

(4)

The squared ideal point estimation error ê∗ is calculated by summing up the
normalized squared difference in each objective. The squared nadir point esti-
mation error ênad is also defined accordingly. Figure 2a shows the median ê∗

during the first 50 generations. Note that the error decreases below one per-
cent after at most 20 generations for all considered test problems. This confirms
the hypothesis, that the ideal point estimation is quick, less problematic and
the assumption to use the smallest values for each objective reduces the esti-
mation error effectively. Analogous, we illustrate ênad in Figure 2b. Clearly, the
overall estimation error is higher than the ideal point estimation error and the
convergence is slower. Furthermore, we can cluster the error into two groups,
where DTLZ1 and DTLZ3 start with a smaller estimation error compared to
DTLZ2 and DTLZ4. This is caused by the multimodality introduced through
the convergence function for DTLZ1 and DTLZ3.
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Fig. 2: Variation of ideal and nadir point estimation errors using HYP.

Next, let us discuss the performance of the different normalization proce-
dures. We use the inverse generational distance (IGD) as a performance metric
for our study. For scaled problems (SDTLZ), we used the weighted Euclidean
distance for the IGD computation, where the distance in objective k is divided
by znadk − z∗k. Figure 3 shows the box plots of the IGD values on the DTLZ
test problem suite for three, five, and ten objectives. In addition to the pro-
posed methods, we evaluate a normalization procedure (TRUE) where the true
boundary points ẑ∗ = z∗ and ẑnad = znad are used all along. The following
observations are made:

• It can be concluded from the experiments, that MNDF is too naive and
performed mostly worse than the other approaches. Due to the fact that the
current non-dominated front may not be close to the true Pareto-optimal
front, the search is easily biased to specific regions of the objective space.

• For scaled DTLZ problems, HYP has more outliers compared to the other
problems. For SDTLZ2, MNDF shows surprisingly good results. Because the
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Fig. 3: Box plots showing IGD values for DTLZ (normalized IGD for SDTLZ)
problems. The median values are presented for each algorithm annotated by **
if best and * if not significantly worse than best (according to Wilcoxon signed-
rank test with p = 0.05)
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convergence function is rather simple, the non-dominated front seems to be
a good representative of the true Pareto-optimal front.

• By comparing the median IGD values, we can observe that TRUE performs
17 out of 18 times the best. However, in practice the boundary points of the
Pareto-front are unknown and this information can not be utilized.

• ME and MNDF showed more outliers and significantly higher median per-
formances compared to HYP. Moreover, seven times HYP did not perform
significantly worse than TRUE. We recommend using HYP whenever the
true boundary points of the Pareto front are unknown.

6 Conclusions

In this paper, different normalization procedures for NSGA-III for solving many-
objective optimization problems have been investigated. It has been shown that
normalization is a crucial component for multi-objective algorithms and nec-
essary to solve problems where objectives are scaled differently. The original
proposed normalization method has been analyzed and degenerate cases, such
as negative intercepts and no unique hyperplanes, have been discussed. The pro-
posed methods have been applied to test problems up to ten objectives, where
the ideal as well as the nadir point estimation errors over generations has been
analyzed. The results confirm that the ideal point estimation is less problematic
and gets settled quickly, whereas the nadir point estimation is tricky and requires
a large number of generations to get settled. Moreover, the overall performance
of NSGA-III with different normalization procedures has been evaluated. Al-
though the original proposed hyperplane concept HYP must handle degenerate
cases carefully (see Algorithm 3), it shows the best performance besides TRUE.
The hyperplane concept is not only applicable for NSGA-III and can now be
tested with other multi- and many-objective algorithms where normalization is
not addressed properly or naively implemented. Moreover, the effect of normal-
ization on different shapes of the Pareto-optimal front must be studied next.
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