
Solving the Bi-Objective Traveling Thief
Problem with Multi-Objective Evolutionary

Algorithms

Julian Blank1, Kalyanmoy Deb2, and Sanaz Mostaghim3

1 Otto-von-Guericke University, 39106 Magdeburg, Germany,
julian.blank@gmx.de,

WWW home page: http://www.research-blank.de
2 Michigan State University, East Lansing MI 48824, USA,

kdeb@egr.msu.edu,
WWW home page: http://www.egr.msu.edu/~kdeb/

3 Otto-von-Guericke University, 39106 Magdeburg, Germany,
sanaz.mostaghim@ovgu.de,

WWW home page: http://www.is.ovgu.de/Team/Sanaz+Mostaghim.html

Abstract. This publication investigates characteristics of and algorithms
for the quite new and complex Bi-Objective Traveling Thief Problem,
where the well-known Traveling Salesman Problem and Binary Knapsack
Problem interact. The interdependence of these two components builds
an interwoven system where solving one subproblem separately does not
solve the overall problem. The objective space of the Bi-Objective Trav-
eling Thief Problem has through the interaction of two discrete sub-
problems some interesting properties which are investigated. We pro-
pose different kind of algorithms to solve the Bi-Objective Traveling
Thief Problem. The first proposed deterministic algorithm picks items
on tours calculated by a Traveling Salesman Problem Solver greedily. As
an extension, the greedy strategy is substituted by a Knapsack Problem
Solver and the resulting Pareto front is locally optimized. These methods
serve as a references for the performance of multi-objective evolutionary
algorithms. Additional experiments on evolutionary factory and recom-
bination operators are presented. The obtained results provide insights
into principles of an exemplary bi-objective interwoven system and new
starting points for ongoing research.

Keywords: Traveling Thief Problem, Traveling Salesman Problem, Knapsack
Problem, Interwoven Systems, Multi-objective Optimization, Discrete optimiza-
tion, Combinatoric problems.

1 Introduction

People are facing real-world problems with dependencies and interwovenness ev-
ery day. Often researchers divide complex problems into various well investigated

2

subproblems to solve them independently. After applying state of the art meth-
ods for the subproblems, partial solutions are combined to a solution for the com-
plex problem. However, considering an interwoven problem the optimal solutions
for the subproblems do not build an optimal solution for the complex problem
because of the interaction. In order to provide an interwoven problem with real-
world characteristics, this publication presents the Bi-Objective Traveling Thief
Problem (TTP), where the well-known Traveling Salesman Problem (TSP) and
Binary Knapsack Problem (KNP) interact.

The focus of this publication is to provide a starting point for doing re-
search on the more complex bi-objective problem by showing characteristics of
the objective space and proposing deterministic as well as evolutionary multi-
objective algorithms. Research on the Bi-Objective Traveling Thief Problem will
give insights into how to handle interwoven problems with multiple objectives
and therefore how to solve problems with real-world characteristics.

The outline of this work is as follows: Section 2 explains the TTP itself
and its two interweaving components. Furthermore, the interdependencies are
described and an example scenario is provided. Section 3 presents related work,
while Section 4 describes properties of the input variables and characteristics of
the objective space. Moreover, the proposed algorithms are explained in Section 5
and the obtained results are presented in Section 6. Finally, a conclusion and
further considerations are provided in Section 7.

2 Problem Definition

2.1 Traveling Thief Problem

The TTP is a combinatorial optimization problem that consists of two interweav-
ing subproblems, namely TSP and KNP [1]. After explaining the components
separately, the interaction in the TTP of these two subproblems is shown.

In the TSP [2] a salesman has to visit n cities. The distances are given by
a map represented as a distance matrix Dn×n = (di,j) with i, j ∈ {1, .., n}
whereby di,j = dj,i. The salesman has to visit each city once and the result is a
permutation vector π = (π1, π2, ..., πn) ∈ Pn, where πi is the i-th city visited by
the salesman. Often π1 = 1 is required which means the starting city is fixed.

min f(π) (1)

f(π) =

n−1∑
i=1

dπi,πi+1
+ dπn,π1

s.t. π ∈ Pn with π1 = 1

(2)

For the KNP [3] a knapsack has to be filled with items by considering the
maximal capacity Q. Each item j has a value bj ≥ 0 and a weight wj ≥ 0 where

3

j ∈ {1, ..,m}. The binary decision vector z = (z1, .., zm) ∈ Bm

defines, if an item is picked or not. The aim is to maximize the profit g(z):

max g(z) (3)

g(z) =

m∑
j=1

zj bj

s.t.

m∑
j=1

zj wj ≤ Q

The TTP combines the above defined subproblems and let them interact to-
gether. The interdependency relation between the components of the Bi-Objective
TTP is visualized in Figure 2.1. The tour π is only part of the TSP component.
Therefore, the profit g(z) remains the same when π is modified. However, the
packing plan z is part of both components and both objectives are influenced
by z. Since both components need the packing plan z as a parameter, it is
hard to solve the problem. In fact, such problems are called interwoven systems
as the solution of one subproblem highly depends on the solution of the other
subproblems.

Fig. 1. Interdependence of the Bi-Objective Traveling Thief Problem

Items are assigned to each city on the map through the assignment matrix
Am×n = (ai,j). Each item is exactly assigned to one city, but one city can
have multiple items. The thief can collect items from each city he is visiting.
The items are stored in a knapsack with the maximum capacity Q carried by
him. As interaction between the subproblems the velocity v(q) depends on the
current knapsack weight q = w(πi). When the thief picks an item, the weight
of the knapsack increases and the velocity of the thief decreases. The velocity
is always in a specific range v = [vmin, vmax] and could not be negative for a

4

feasible solution. Whenever the knapsack is heavier than the maximum weight Q,
the capacity constraint is violated. The variables π and z as well as the item
information w and b are defined analogously to TSP and KNP. The two objective
functions f(π, z) and −g(z) have to be minimized. The whole problem is defined
as follows:

Symbol Description

π ∈ Pn Tour as permutation vector with length n. πi represents the i-th
city visited by the thief.

z ∈ Bm Picking plan as binary vector with length m. zi = 1 means the
i-th item is picked up.

Dn×n = (di,j) Distance matrix: di,j represents the distance between city i and
city j whereby di,j = dj,i.

w ∈ Zm Item’s weight vector: wi is the weight of item i.
b ∈ Zm Item’s value vector: bi is the value of item i.
vmin ∈ R+ Minimum velocity
vmax ∈ R+ Maximum velocity
Q ∈ Z+ Maximum knapsack capacity
Am×n = (ai,j) Assignment of items to cities where ai,j ∈ {0, 1} and

∀j ∈ {1, ..,m} :
∑n
i=1 aj,i = 1. (each item is assigned to exactly

one city)

min
π,z

F (π, z) (4)

F (π, z) = (f(π, z),−g(z))

f(π, z) =

n−1∑
i=1

dπi,πi+1

v(w(πi))
+

dπn,π1

v(w(πn))

g(z) =

m∑
j=1

zj bj

v(q) = vmax −
q

Q
· (vmax − vmin)

w(πi) =

i∑
k=1

m∑
j=1

zj wj aj,πi

s.t.

m∑
j=1

zj wj ≤ Q

π ∈ Pn with π1 = 1

5

Note, that the item value drop effect mentioned in [4] is neglected in our
considerations. An example scenario is provided in Section 2.2. Given a small
map, a tour π and a packing plan z the traveling time and the profit for the thief
are calculated and the interdependency effect is shown. Also, the Pareto front
for the given example is presented tabularly.

2.2 Example Scenario

The thief travels on a map represented as a graph shown in Figure 2. He starts
at city 1 and has to visit city 2, 3, 4 exactly once and return to city 1. In this
example each city provides one item and the thief could decide to steal item Ij
or not.

Fig. 2. An Example Scenario for the Traveling Thief Problem

A permutation vector, which contains all cities exactly once, and a binary
picking vector are needed to calculate the objectives. Even though, this is a
very small example with four cities and four items the solution space consists of
(n− 1)! · 2m = 6 · 16 = 96 combinations.

In order to understand how the objectives are calculated, an example hand
calculation for the tour π = [1, 3, 2, 4] and the packing plan z = [0, 1, 0, 1] is done
as follows: The thief starts with the maximum velocity, because the knapsack is
empty. He begins his tour at city 1 and picks no item there.

i πi w(πi) v(w(πi)) dπi,πi+1 tπi,πi+1

1 1 0 1 9 9 -
2 3 0 1 5 5 9
3 2 30 0.6625 5 7.5472 14
4 4 51 0.42625 3 7.0381 21.547

- 1 51 0.42625 - - 28.585

Table 1. Hand calculations on the Example Scenario for the tour π = [1, 3, 2, 4] and
picking plan z = [0, 1, 0, 1]

6

For an empty knapsack w(1) = 0 the velocity is v(0) = vmax = 1.0. The
distance from city 1 to city 3 is 9.0 and the thief needs 9.0 time units. At city
3 the thief will not pick an item and continue to travel to city 2 with w(3) = 0
and therefore with vmax in additional 5.0 time units. Here he picks item I2
with w2 = 30 and the current weight becomes w(2) = 30, which means the
velocity will be reduced to v(30) = 1.0− (30

80) · 0.9 = 0.6625. For traveling from
city 2 to city 4 the thief needs the distance divided by the current velocity

5.0
0.6625 ≈ 7.5472. At city 4 he picks I4 with w4 = 21 and the current knapsack
weight increases to w(4) = 30+21 = 51. For this reason the velocity decreases to
v(51) = 1.0−(51

80)·0.9 = 0.42625. For returning to city 1 the thief needs according
to this current speed 3.0

0.42625 ≈ 7.0381 time units. Finally, we sum up the time
for traveling from each city to the next

∑n
k=1 tπk,πk+1

= 9+5+7.5472+7.0381 =
28.5853 to calculate the whole traveling time.

The final profit is calculated by summing up the values of all items which
is 34 + 25 = 59. So the variable (π, z) with π = [1, 3, 2, 4] and z = [0, 1, 0, 1] is
mapped to the point (28.5853,−59.0) in the objective space.

The Pareto front contains 10 solutions and our hand calculation is printed
bold in Table 2.

π z f(π, z) -g(z)

[1, 2, 3, 4] [0, 0, 0, 0] 20.0 0.0
[1, 4, 3, 2] [0, 0, 0, 0] 20.0 0.0
[1, 2, 3, 4] [0, 0, 0, 1] 20.93 -25.0
[1, 4, 3, 2] [0, 1, 0, 0] 22.04 -34.0
[1, 4, 3, 2] [0, 0, 1, 0] 27.36 -40.0
[1,3,2,4] [0,1,0,1] 28.59 -59.0
[1, 4, 3, 2] [1, 1, 0, 0] 32.75 -64.0
[1, 2, 3, 4] [0, 0, 1, 1] 33.11 -65.0
[1, 4, 3, 2] [0, 1, 1, 0] 38.91 -74.0
[1, 3, 2, 4] [1, 1, 0, 1] 53.28 -89.0

Table 2. Pareto front of the Example Scenario.

3 Related Work

The TTP was introduced by Bonyadi [4]. He postulated the necessity of research
on interwoven problems and provided the mathematical formulation of the TTP.
Also, the single and bi-objective version of the problem was introduced. Bonyadi
laid the foundation for further research. Afterwards, a new large-scale benchmark
was proposed [5]. The benchmark is based on the TSPLIB [6] instances which
are available for TSP. Since the TTP also needs the KNP part, items with
weight and profit attributes are added to the cities. Three different weight-value
correlations and ten different capacity categories are considered. Instances with

7

1, 3, 5 and 10 items per city are provided. All this together builds a benchmark
set with 9,720 different instances.

Later, most of the publications aimed to solve these single-objective bench-
mark problems by using different types of algorithms: Heuristic Based [5] [7] [8]
[9] [10], Local Search [5], Coevolution [8] [11], Evolutionary Algorithm [12] [11]
[13], Ant Colony Optimization [9].

However, so far less research is done on the Bi-Objective TTP where the
solution space has more than one dimension and pareto-optimal solutions have
to be considered.

4 Characteristics of the Bi-Objective Traveling Thief
Problem

In the following characteristics of the TTP are investigated. Since our exam-
ple scenario considers only a few cities and items, the optimal Pareto front
can be determined by solving the problem exhaustively. Therefore, inferences
about problem specific characteristics can be drawn and finally generalized. The
objective space of our example scenario colored by tours and annotated with
characteristics is shown in Figure 3.

0 20 40 60 80 100 120 140
−100

−80

−60

−40

−20

0

[0, 2, 1, 3]

[0, 3, 1, 2]

[0, 1, 2, 3]

[0, 3, 2, 1]

[0, 2, 3, 1]

[0, 1, 3, 2]

Fig. 3. Objective Space of the Example Scenario colored by Tour

Symmetry of π

For the TTP it is considered that the thief travels on a symmetric map. Whenever
the knapsack is empty z = zempty =

∑m
i=1 zi = 0, the symmetry of π holds. Let

us assume we have the tour π and the symmetric tour sym(π), then

f(π, zempty) = f(sym(π), zempty) (5)

8

is guaranteed. Whenever the thief starts to pick up an item this fact does
not hold anymore. Whenever TSP Solvers are used this fact has to be kept in
mind.

Horizontal Alignments in the Objective Space

The objective space has many horizontal alignments. Solutions on the same
horizontal line have the same profit −g(z). Considering the TTP as a problem
consisting of two subproblems, every horizontal line represents an embedded
TSP. The topmost horizontal line where g(z) = 0 represents the TSP without
any interaction with the KNP component. In the objective space of the example
scenario (c.f. Figure 3) six different solutions are on each horizontal line. Because
of the symmetry of π when z = zempty only three different points exist in the
objective space on the topmost TSP line.

Right Shift

For solutions where g(z) = 0 the thief does not make any profit and z = zempty.
For these solutions the velocity during the tour is consistently vmax. If the thief
starts to pick an item, he gets slower because the weight increase leads to velocity
decrease. All solutions on the x-axis with −g(z) = 0 are shifted to the right when
items are picked (c.f. Figure 3). These right shifts occur when z is optimized for
a fixed π.

5 Algorithms

In the following different algorithms for the Bi-Objective TTP are proposed. The
first two algorithms are deterministic and explained by pseudo code. Further-
more, the principles of the multi-objective evolutionary algorithm NSGA-II are
described. Different factory and recombination operators are directly evaluated
in Section 6.

Greedy Algorithm This algorithm represents a naive deterministic approach.
The procedure is shown in Algorithm 1. First, an existing TSP Solver - in our
implementation LKH with the Lin-Kernighan heuristic [14] - is used to calculate
a tour π∗. A set which will contain only non dominated solutions in the further
optimization procedure is initialized with F (π∗, zempty) and F (sym(π∗), zempty).
As long as the maximum capacity constraint is not violated items are picked.
The getNextItemGreedily method returns the next item which is not picked so
far and provides the best bi

wi
rate. Then z combined with π∗ and sym(π∗) is

added to the set. Whereby the add method needs to ensure to keep a set of non
dominated solutions. Finally the resulting Pareto front is returned.

The Greedy Algorithm serves as a reference for the other algorithms and
does maximally evaluate O(2m) = O(m) times the F (π, z) function. There is no

9

Algorithm 1. Greedy Algorithm

Require: P ← Thief Problem
π∗ ← tspSolver(P)
z ← zempty

front ← {F (π∗, z), F (sym(π∗), z)}
while

∑m
j=1 wjzj ≤ Q do

i← getNextItemGreedily(P , z)
zi ←= 1
add(front,F (π∗, z))
add(front,F (sym(π∗), z))

end while
return front

maximum number for non dominated solutions in the final front which means
for problem instances with many items and a high maximum capacity Q many
solutions will be added to the front.

Independent Subproblem Algorithm Since a lot of research has been done
on the knapsack problem, the approach above can be extended by using a KNP
Solver instead of solving it greedily. The pseudo code for the algorithm is shown
in Figure 2. After calculating π∗, the maximum weight capacity is divided equally
into T intervals. For instance, if Q = 12 and T = 4 the corresponding maximum
capacities are I = {0, 4, 8, 12}. For each of these maximum capacities the KNP
Solver is used to calculate a packing plan z∗. Then - analogous to the Greedy
Algorithm - the resulting packing plan is combined with π∗ and sym(π∗).

Algorithm 2. Independent Subproblem Algorithm

Require: P ← Thief Problem
Require: T ← Maximum of Solutions
π∗ ← tspSolver(P)
I ← getLinearMaxWeight(P , T)
front ← {}
for all i ∈ I do

z∗ ← knpSolver(P , i)
add(front,F (π∗, z∗))
add(front,F (sym(π∗), z∗))

end for
if localOptimize then

while hasEvaluations() do
add(front, localOptimize(getRandom(front)))

end while
end if
return front

10

Additionally, a further local optimizing procedure can be applied by selecting
randomly one solution of the Pareto front and optimizing it. In our implemen-
tation we perform with a probability of 1

3 a swap tour mutation, of 1
3 a bitlfip

pack mutation and of 1
3 both mutations. If the new solution is not dominated

by any other solution, it is added to the front. The local optimization is done
until no function evaluations are left. The standard version is labeled with ISA
and with ISA-LOCAL if the front is local optimized.

NSGA-II As optimization framework the evolutionary multi-objective Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [15] is used. As usual for
evolutionary algorithms all individuals are factored and added to the population
in the beginning. Then each individual gets a rank based on its level of dom-
ination and a crowding distance which is used as a density estimation in the
objective space. The binary tournament selection compares rank and crowding
distance of randomly selected individuals in order to return individuals for the
recombination. After executing crossover and mutation operators the offspring
is added to the population. In the end of each generation the population is trun-
cated after sorting it by domination rank and crowding distance. All details of
the algorithm can be found in [15].

Also, meta-algorithms provide a great possibility to use the same method
to solve many problems, different domain specific operators have to be defined.
NSGA-II needs to know how to create and recombine individuals. For the exper-
iment we used a population size of 100 individuals and performed the mutation
operations in 30% of cases. Moreover, an additional method to remove duplicates
each generation is executed in order to prevent diversity loss. The evaluation of
different operators is presented in Section 6

6 Results

In the following the proposed algorithms are evaluated and the results are shown.
After describing the problem instances, different factory and recombination oper-
ators for NSGA-II are compared. Afterwards, the final evaluation takes the best
found operator combination for NSGA-II and the other proposed algorithms into
account.

All algorithms were executed 30 times on the same problem instance with
maximum 100000 function evaluations each run. The median Pareto fronts of
these runs were calculated by using the Empirical first-order Attainment Function
(EAF) [16].

Problem instances

We created different problem instances, that vary in the city location generator,
number of cities, number of items per city and the knapsack capacity. The num-
ber of cities are 10, 20, 50 and 100 with 1, 5 and 10 items per city. The maximum
capacity is divided into three different categories, namely small c = 0.2, medium

11

c = 0.5 and large c = 0.8 where Q = c
∑m
i=1 wi. The velocity range is set to

vmin = 0.1 and vmax = 1.
The name pattern for problem instances with the random city generator looks

as follows:

multi - numOfCities - itemsPerCity - knapsackCapacity

For all multi-cluster-XX problem instances 100 cities are assigned to XX
different clusters. Only one item is assigned to each city and the knapsack has
a medium capacity. This imitates a map with cities where many locations occur
in densely populated areas.

NSGAII - Knapsack Component

The factory is an important part of an evolutionary algorithm. Therefore, we
made up an experiment in order to test three different packing plan factories.
Note, that this experiment showed the same results whatever tour factory and
recombination operators we combined it with. Two packing plans are combined
by using a single point crossover and mutated by a bitflip mutation.

– PACK-ONE: Produces knapsacks with only one randomly picked item.
– PACK-RANDOM: Completely random knapsacks without violating the max-

imum capacity constraint.
– PACK-OPTIMAL: Define randomly 0 ≤ Q′ ≤ Q and return the result of a

KNP Solver [17] with maximum capacity Q′

−20000

−15000

−10000

−5000

0

10000 12500 15000 17500 20000

time

−
pr

of
it

algorithm

Greedy

NSGAII−PACK−ONE

NSGAII−PACK−OPTIMAL

NSGAII−PACK−RANDOM

multi−0100−01−s

(a) Generation 30

−20000

−15000

−10000

−5000

0

10000 12500 15000 17500

time

−
pr

of
it

algorithm

Greedy

NSGAII−PACK−ONE

NSGAII−PACK−OPTIMAL

NSGAII−PACK−RANDOM

multi−0100−01−s

(b) Generation 100

Fig. 4. Objective Space after 30 and 100 Generations on the Problem Instance
multi-0100-1-s with different Knapsack Factories.

The obtained results for the knapsack factories for one problem instance are
shown exemplarily in Figure 4. The factory PACK-OPTIMAL produces bet-
ter solutions than the naive Greedy approach. PACK-ONE needs more time to
converge with solutions with higher profit than PACK-RANDOM. All NSGA-II
algorithms outperform Greedy after 100 generations. The same effect has been
observed on all other problem instances.

12

NSGAII - Tour Component

As it seems to be a good choice to factor packing plans z calculated by a KNP
Solver, it should also be considered to return a tour π∗ calculated by a TSP
Solver. However, in this case only π∗ and sym(π∗) in the starting population
exist and no diversity of different tours is given. Moreover, the 2OPT factory
returns two-opt optimal [14] or the RANDOM factory completely random tours.
The edge recombination crossover [18] (EDGE) is used to combine tours and
a swap mutation to mutate. The recombination of packing plans is done as
described above and the optimal packing plan factory is used. In order to see
the usefulness of EDGE, we tried another factory FIXED as well which does not
perform any crossover on the tours. To sum up, this experiment includes the
following four combinations:

– NSGAII-RANDOM-EDGE: Random tours with EDGE
– NSGAII-2OPT-EDGE: Two-opt optimal tours with EDGE
– NSGAII-OPT-EDGE: Tours calculated by TSP Solver and EDGE
– NSGAII-OPT-FIXED: Tours calculated by TSP Solver and no crossover

−20000

−15000

−10000

−5000

0

10000 15000 20000 25000

time

−
pr

of
it

algorithm

Greedy

NSGAII−2OPT−EDGE

NSGAII−OPT−EDGE

NSGAII−OPT−FIXED

NSGAII−RANDOM−EDGE

multi−0100−01−s

(a) multi-0100-01-s

−40000

−30000

−20000

−10000

0

4000 6000 8000 10000 12000

time

−
pr

of
it

algorithm

Greedy

NSGAII−2OPT−EDGE

NSGAII−OPT−EDGE

NSGAII−OPT−FIXED

NSGAII−RANDOM−EDGE

multi−cluster−05

(b) multi-cluster-05

Fig. 5. Objective Space after 1000 Generations with different Tour Factories.

Figure 5 illustrates the results of the different tour factories. The algorithm
NSGAII-RANDOM-EDGE shows the worst results because the evolution is not
able to find tours that are fast enough. The OPT factory outperforms the 2OPT
factory on the multi-0100-01-s instance. OPT-FIXED and OPT-EDGE showed
almost the same results which means the edge recombination crossover did not
bring much improvement. In fact, as mentioned above only two tours are in the
starting population. A crossover between π∗ itself or π∗ and sym(π∗) is difficult
to perform. However, when a mutation brings an improvement, a diversity of
tours might exist.

13

Evaluation

After analyzing the evolutionary components of NSGA-II, a complete evaluation
including the other proposed algorithm is presented. The hypervolume of the
normalized median Pareto fronts is shown in Table 6. The algorithm denoted
by NSGAII is the combination of operators with the best performance found
above. It uses for the packing plan the OPT factory, the bitlfip mutation and
the single point crossover and for the tour the OPT factory, the swap mutation
and the edge recombination crossover. The other algorithms are implemented as
described in Section 5.

Greedy ISA ISA-
LOCAL

NSGA-II

multi-0010-01-m 0.562 0.852 0.874 0.874
multi-0010-05-m 0.79 0.861 0.863 0.881
multi-0020-01-m 0.616 0.797 0.805 0.835
multi-0020-05-m 0.626 0.816 0.816 0.853
multi-0050-01-m 0.701 0.847 0.848 0.872
multi-0100-01-l 0.803 0.805 0.806 0.847
multi-0100-01-m 0.772 0.777 0.781 0.851
multi-0100-01-s 0.741 0.752 0.755 0.85
multi-0100-05-l 0.832 0.830 0.830 0.849
multi-0100-05-m 0.808 0.806 0.806 0.838
multi-0100-05-s 0.801 0.800 0.800 0.851
multi-0100-10-l 0.843 0.840 0.840 0.852
multi-0100-10-m 0.825 0.822 0.822 0.84
multi-0100-10-s 0.808 0.806 0.806 0.846
multi-cluster-03 0.827 0.846 0.846 0.867
multi-cluster-05 0.813 0.867 0.868 0.884
multi-cluster-10 0.804 0.866 0.866 0.881

Table 3. Hypervolume of Normalized Median Pareto fronts after 100000 Evaluations

Clearly NSGA-II shows the best performance on all problem instances. Since
Greedy and ISA do not use as many evaluations as the other algorithms, they
are more or less a reference that must be outperformed. In fact, using a KNP
Solver instead of picking up items greedily improves the overall result. But also
note, that ISA-LOCAL is not able to show significantly better results than ISA.

Moreover, further analysis of NSGA-II Pareto fronts showed the following: In
average only 3.39 different tours exist in each Pareto front. Also, there were runs
where only the two starting tours exist. The maximum diversity was found in
multi-0100-01-s with 15 different tours. In fact, this shows the challenge to start
with fast tours in order to have a good initial population, but to preserve diversity
during the evolution. Note, that all Pareto fronts seemed to be highly converged
for each type of algorithm. The hypervolume of minimum and maximum Pareto
fronts showed almost the same results over all runs.

14

7 Conclusion

After introducing the Bi-Objective Traveling Thief Problem, showing the inter-
action of its subproblems, and presenting their interdependencies the problem
is defined mathematically. Characteristics of the problem itself and the objec-
tive space provide basic knowledge in order to propose algorithms for the Bi-
Objective Traveling Thief Problem. The evaluation of these algorithms shows
the advantages of multi-objective evolutionary methods in comparison to de-
terministic approaches. However, the diversity of tours in the Pareto front and
therefore a better convergence might be improvable with other evolutionary op-
erators. Therefore, operators that consider the interwovenness and are not per-
forming recombinations on tour and packing plan independently might be useful.
Furthermore, the performance of these algorithms on problem instances with a
large-scale has to be verified. Even though, the Traveling Thief Problem com-
bines two well-known problems, the interdependence is challenging and therefore
the complexity is more than just the sum of these two subproblems. It is more,
because the interwovenness does not allow applying state-of-the-art algorithms
for TSP or KNP. Therefore, one plus one is more than two and further studies
should be done on the overflow part.

Acknowledgment

This work was supported by a fellowship within the FITweltweit programme of
the German Academic Exchange Service (DAAD).

References

1. H. Ishibushi, K. Klamroth, S. Mostaghim, B. Naujoks, S. Poles, R. Purshouse,
G. Rudolph, S. Ruzika, S. Sayin, M. M. Wiecek, and X. Yao, Multiobjective Opti-
mization for Interwoven Systems. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015.

2. D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling Sales-
man Problem: A Computational Study (Princeton Series in Applied Mathematics).
Princeton, NJ, USA: Princeton University Press, 2007.

3. M. G. Lagoudakis, “The 0-1 knapsack problem – an introductory survey,” 1996.

4. M. R. Bonyadi, Z. Michalewicz, and L. Barone, “The travelling thief problem:
The first step in the transition from theoretical problems to realistic problems.” in
IEEE Congress on Evolutionary Computation. IEEE, 2013, pp. 1037–1044.

5. S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neumann,
“A comprehensive benchmark set and heuristics for the traveling thief problem,”
in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’14. New York, NY, USA: ACM, 2014, pp. 477–484.
[Online]. Available: http://doi.acm.org/10.1145/2576768.2598249

6. G. Reinelt, “TSPLIB - A t.s.p. library,” Universität Augsburg, Institut für Math-
ematik, Augsburg, Tech. Rep. 250, 1990.

15

7. H. Faulkner, S. Polyakovskiy, T. Schultz, and M. Wagner, “Approximate
approaches to the traveling thief problem,” in Proceedings of the 2015
on Genetic and Evolutionary Computation Conference, ser. GECCO ’15.
New York, NY, USA: ACM, 2015, pp. 385–392. [Online]. Available: http:
//doi.acm.org/10.1145/2739480.2754716

8. M. R. Bonyadi, Z. Michalewicz, M. R. Przybylek, and A. Wierzbicki, “Socially
inspired algorithms for the travelling thief problem,” in Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, ser. GECCO
’14. New York, NY, USA: ACM, 2014, pp. 421–428. [Online]. Available:
http://doi.acm.org/10.1145/2576768.2598367

9. R. Birkedal, “Design, implementation and comparison of randomized search
heuristics for the traveling thief problem,” Master’s thesis, Technical University
of Denmark, Department of Applied Mathematics and Computer Science,
Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby, Denmark,
compute@compute.dtu.dk, 2015. [Online]. Available: http://www.compute.dtu.
dk/English.aspx

10. Y. Mei, X. Li, F. Salim, and X. Yao, “Heuristic evolution with genetic
programming for traveling thief problem,” in IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015, 2015, pp. 2753–2760.
[Online]. Available: http://dx.doi.org/10.1109/CEC.2015.7257230

11. Y. Mei, X. Li, and X. Yao, “On investigation of interdependence between
sub-problems of the travelling thief problem,” Soft Computing, pp. 1–16, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s00500-014-1487-2

12. ——, “Improving efficiency of heuristics for the large scale traveling thief
problem,” in Simulated Evolution and Learning - 10th International Conference,
SEAL 2014, Dunedin, New Zealand, December 15-18, 2014. Proceedings, 2014, pp.
631–643. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-13563-2\ 53

13. C. Wachter, “Solving the travelling thief problem with an evolutionary algorithm,”
Diplomarbeit, Technischen Universitt Wien, 2015.

14. D. Applegate, W. Cook, and A. Rohe, “Chained lin-kernighan for large traveling
salesman problems,” INFORMS J. on Computing, vol. 15, no. 1, pp. 82–92, Jan.
2003. [Online]. Available: http://dx.doi.org/10.1287/ijoc.15.1.82.15157

15. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist multi-objective
genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,
vol. 6, pp. 182–197, 2000.

16. V. G. Fonseca and C. M. Fonseca, The Attainment-Function Approach
to Stochastic Multiobjective Optimizer Assessment and Comparison. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 103–130. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02538-9 5

17. S. Martello, D. Pisinger, and P. Toth, “Dynamic programming and strong bounds
for the 0-1 knapsack problem,” Manage. Sci., vol. 45, no. 3, pp. 414–424, 1999.

18. I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation crossover
operators on the traveling salesman problem,” in Proceedings of the Second In-
ternational Conference on Genetic Algorithms on Genetic algorithms and their
application. Mahwah, NJ, USA: L. E. Associates, Inc., 1987, pp. 224–230.

